酵母提取物试剂盒

酵母提取物 – U-13C(ISO1 或 L-ISO1)和未标记(ISO1-UNL 和 L-ISO1-UNL) – 专为内部标准化(即基质掺入)定量而设计用于非靶向和靶向代谢组学的实验和质量控制评估。这些提取物中的化合物涵盖广泛的代谢类别(例如氨基酸和有机酸、磷酸糖、辅酶),这些代谢类别与各种生化途径(例如柠檬酸和乙醛酸循环、氨基酸和核苷酸代谢、磷酸戊糖)和细胞/分子相关过程(例如免疫系统、凝血、DNA 代谢)。这些代谢物已通过多种 LC-/GC-MS 方法进行了严格表征,并且在简单重构后可用于各种研究用途。

套件内容

  • 干燥的酵母提取物为 U-13C 和/或未标记。

  • 文件包(通过二维码提供)。包装内含用户手册,其中包含示例程序和 LC-MS 方法,供用户参考。

相关资源

代谢物和脂质酵母提取物

所有提取物均由 ISOtopic Solutions 生产。有关这些产品的更多信息,请访问ISOtopic Solutions.

相关产品

经常问的问题

酵母提取物来自生命周期的哪个部分? 酵母(毕赤酵母,菌株 CBS 7435)处于指数生长期。在此阶段,细胞使用大部分可用底物进行繁殖。所用酵母菌株的倍增时间略小于3小时。通过验证发酵过程中的 OD 600 测量值可确保指数增长。提取物制备详述于PMID: 23086617.  

U-13C (98%) 中的“U”指的是什么? “U”表示统一标记的化合物。例如,NADP+,其公式为 C21H29N7O17P3 在其 13C 标记形式中具有 21 个 C。

溶解干代谢酵母提取物的推荐程序是什么? 溶解 ISO1 和 ISO1-UNL 的推荐程序如下:

1. 在 2 mL 溶剂(例如水、50% 甲醇)中重构提取物。
2.用手用力摇晃,间歇性高速涡旋(至少 2 分钟)。
3. 20°C、4000 rcf 离心 5 分钟。
4. 然后可以将澄清的标准溶液稀释(1/10 v/v)直接使用或进一步制备用于校准和基质添加。

上面的资源部分显示了此过程的视频演示。

这些酵母提取物在哪些样品类型中进行了测量?这些提取物已应用于人体组织(例如血浆)和细胞(例如结肠癌),通过各种 LC-和 GC-MS 方法进行 QC 或定量分析。例如,ISO1 的用户手册(通过 QR 码随试剂盒发货提供)概述了三个利用同位素比分析进行绝对或相对代谢物定量的应用示例。

酵母提取物中常见的分析物有哪些? 在常规、批次间测量中观察到的分析物或脂肪酸/脂质的列表在各自的章节中给出 稳定同位素标记的混合物、套装和试剂盒 目录。该列表不是有限的,因为其他分析物已通过替代方案进行了鉴定(例如,辅酶 As – 乙酰基、丙二酰基、丙酰基;1-磷酸葡萄糖;1-磷酸果糖)。请询问是否有其他感兴趣的分析物,我们将进行调查。

参考实例

Turtoi, E.; Jeudy, J.; Henry, S.; et al. 2023. Analysis of polar primary metabolites in biological samples using targeted metabolomics and LC-MS. STAR Protoc, 4(3), 102400-102422. PMID: 37590149
Serafimov, K.; Lämmerhofer, M. 2022. Metabolic profiling workflow for cell extracts by targeted hydrophilic interaction liquid chromatography-tandem mass spectrometry. J Chromatogr A, 1684, 463556-463555. 
PMID: 36265203
 Li, P.; Su, M.; Chatterjee, M.; et al. 2022. Targeted analysis of sugar phosphates from glycolysis pathway by phosphate methylation with liquid chromatography coupled to tandem mass spectrometry. Anal Chim Acta, 1221, 340099-34109.
PMID: 35934345
Reiter, A.; Asgari, J.; Wiechert, W.; et al. 2022. Metabolic footprinting of microbial systems based on comprehensive in silico predictions of MS/MS relevant data. Metabolites, 12(3), 257-280. PMID: 35323700
Zhao, X.; Golic, F.T.; Harrison, B.R.; et al. 2022. The metabolome as a biomarker of aging in Drosophila melanogaster. Aging Cell, 21(2), e13548-13561. PMID: 35019203
Rampler, E.; Hermann, G.; Grabmann, G.; et al. 2021. Benchmarking non-targeted metabolomics using yeast-derived libraries. Metabolites, 11(3), 160-179. PMID: 33802096 
Castoldi, A.; Monteiro, L.B.; van Teijlingen Bakker, N.; et al. 2020. Triacylglycerol synthesis enhances macrophage inflammatory function. Nat Commun, 11(1), 4107. PMID: 32796836 
Mairinger, T.; Weiner, M.; Hann, S.; et al. 2020. Selective and accurate quantification of N-acetylglucosamine in biotechnological cell samples via GC-MS/MS and GC-TOFMS. Anal Chem, 92(7), 4875-4883. PMID: 32096989 
Rusz, M.; Rampler, E.; Keppler, B.K.; et al. 2019. Single spheroid metabolomics: optimizing sample preparation of three-dimensional multicellular tumor spheroids. Metabolites, 9(12). 304. PMID: 31847430 
Zhang, Y.; Vera, J.M.; Xie, D.; et al. 2019. Multiomic fermentation using chemically defined synthetic hydrolyzates revealed multiple effects of lignocellulose-derived inhibitors on cell physiology and xylose utilization in Zymomonas mobilis. Front Microbiol, 10, 2596. PMID: 31787963 
Galvez, L.; Rusz, M.; Schwaiger-Haber, M.; et al. 2019. Preclinical studies on metal based anticancer drugs as enabled by integrated metallomics and metabolomics. Metallomics, 11(10), 1716-1728. PMID: 31497817 
Si-Hung, L.; Troyer, C.; Causon, T.; et al. 2019. Sensitive quantitative analysis of phosphorylated primary metabolites using selective metal oxide enrichment and GC- and IC-MS/MS. Talanta, 205, 120147. PMID: 31450417 
van Tol, W.; van Scherpenzeel, M.; Alsady, M.; et al. 2019. Cytidine diphosphate-ribitol analysis for diagnostics and treatment monitoring of cytidine diphosphate-l-ribitol pyrophosphorylase A muscular dystrophy. Clin Chem, 65(10), 1295-1306.  PMID: 31375477 
Causon, T.J.; Si-Hung, L.; Newton, K.; et al. 2019. Fundamental study of ion trapping and multiplexing using drift tube-ion mobility time-of-flight mass spectrometry for non-targeted metabolomics. Anal Bioanal Chem, 411(24), 6265-6274. PMID: 31302708 
Sullivan, M.R; Danai, L.V.; Lewis, C.A.; et al. 2019. Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. Elife, 8, e44235. PMID: 30990168 
Demarest, T.G.; Truong, G.T.D.; Lovett, J.; et al. 2019. Assessment of NAD+ metabolism in human cell cultures, erythrocytes, cerebrospinal fluid and primate skeletal muscle. Anal Biochem, 572, 1-8. PMID: 30822397 
Hermann, G.; Schwaiger, M.; Volejnik, P.; et al. 2018. 13C-labelled yeast as internal standard for LC-MS/MS and LC high resolution MS-based amino acid quantification in human plasma. J Pharm Biomed Anal, 155, 329-334. PMID: 29704823 
Guijas, C.; Montenegro-Burke, J.R.; Domingo-Almenara, X.; et al. 2018. METLIN: A technology platform for identifying knowns and unknowns. Anal Chem, 90(5), 3156-3164. PMID: 29381867 
Si-Hung, L.; Causon, T.J.; Hann, S. 2017. Comparison of fully wettable RPLC stationary phases for LC-MS-based cellular metabolomics. Electrophoresis, 38(18), 2287-2295. PMID: 28691762 
Schwaiger, M.; Rampler, E.; Hermann, G., et al. 2017. Anion-exchange chromatography coupled to high-resolution mass spectrometry: a powerful tool for merging targeted and non-targeted metabolomics. Anal Chem, 89(14), 7667-7674. PMID: 28581703 
Ortmayr, K.; Hann, S.; Koellensperger, G. 2015. Complementing reversed-phase selectivity with porous graphitized carbon to increase the metabolome coverage in an on-line two-dimensional LC-MS setup for metabolomics. Analyst, 140(10), 3465-3473. PMID: 25824707