膜蛋白

膜蛋白占所有表达蛋白的20%至30%。它们在结构生物学和药物开发领域引起了极大的兴趣,因为它们占当今所有药物靶标的一半以上。膜蛋白具有疏水性外部,相对动态,并且以相对较低的水平产生。尽管这些因素给获得用于核磁共振分析的稳定制剂带来了困难,但在研究膜蛋白时,可以使用磷脂和去垢剂来确保适当的溶解和稳定性。尽管膜蛋白具有重要的功能重要性,但确定这些膜蛋白的结构比球状蛋白更具挑战性。幸运的是,溶液和固体核磁共振都有许多样品制备条件可供选择。

Cambridge Isotope Laboratories, Inc. 提供由FB试剂生产的氘代磷脂和去垢剂,用于基于NMR的膜蛋白科学研究。

Stable Isotopes for Biomolecular NMR

Buffers, Reagents, Lipids and Detergents view all

Related Products

常见问题

使用氘代磷脂有什么好处? 使用氘代洗涤剂和磷脂可以简化1H-NMR波谱,并更容易在多维中检测来自生物分子的信号 核磁共振实验。此外,它们允许将偶极弛豫效应降至最低,这反过来又导致某些系统中的信号增强。

参考实例

Movelan, K.T.; Wegstroth, M.; Overkamp, K.; et al. 2020. Imidazole-imidazole hydrogen bonding in the pH-densing histidine side chains of influenza A M2. J Am Chem Soc, 142(6), 2704-2708. PMID: 31970979 
Bibow, S. 2019. Opportunities and challenges of backbone, sidechain and RDC experiments to study membrane protein dynamics in a detergent-free lipid environment using solution state NMR. Front Mol Biosci, 6, 103. PMID: 31709261
Eddy, M.T.; Yu, T.Y.; Wagner, G.; et al. 2019. Structural characterization of the human membrane protein VDAC2 in lipid bilayers by MAS NMR. J Biomol NMR, 73(8-9), 451-460. PMID: 31407201
Bayrhuber, M.; Maslennikov, I.; Kwiatkowski, W.; et al.  2019. NMR solution structure and functional behavior of the human proton channel. Biochemistry, 58(39), 4017-4027. PMID: 31365236
Toyama, Y.; Shimada, I. 2019. Frequency selective coherence transfer NMR spectroscopy to study the structural dynamics of high molecular weight proteins. J Mag Res, 304, 62-67. PMID: 31129430
Brazin, K.N.; Mallis, R.J.; Boeszoermenyi, A.; et al. 2018. The T cell antigen receptor a transmembrane domain coordinates triggering through regulation of bilayer immersion and CD3 subunit associations. Immunity, 49(5), 829-841. PMID: 30389415
O'Brien, E.S.; Lin, D.W.; Fuglestad, B.; et al. 2018. Improving yields of deuterated, methyl labeled protein by growing in H2O. J Biomol NMR, 71(4), 263-273 . PMID: 30073492
Hagn, F.; Nasr, M.L.; Wagner, G. 2018. Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR. Nat Protoc, 13(1), 79-98. PMID: 29215632
Arenas, R.C.; Danielczak, B.; Martel, A.; et al. 2017. Fast collisional lipid transfer among polymer-bounded nanodiscs. Scientific Reports, 7, 45875. PMID: 28378790
Bibow, S.; Polyhach, Y.; Eichmann, C.; et al. 2017. Solution structure of discoidal high-density lipoprotein particles with a shortened apolipoprotein A-I. Nat Struct Mol Biol, 24(24), 187-193. PMID: 28024148
Laguerre, A.; Lõhr, F.; Henrich, E.; et al. 2016. From nanodiscs to isotropic bicelles: a procedure for solution NMR studies of detergent sensitive integral membrane proteins. Structure, 24(10), 1830-1841. PMID: 27618661
Bugge, K.; Papaleo, E.; Haxholm, G.W.; et al. 2016. A combined computational and structural model of the full-length human prolactin receptor. Nat Commun, 7, 11578. PMID: 27174498
Hagn, F.; Etzkorn, M.; Raschle, T.; et al. 2013. Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc, 135(5), 1919-1925. PMID: 23294159