Cambridge Isotope Laboratories, Inc. (CIL) is pleased to offer a dilute-and-shoot 13C-labeled and unlabeled metabolite yeast extract for use as an internal standard in MS-based quantitative or profiling studies of various sample types.¹⁻¹¹

These extracts have been rigorously characterized by a number of methodologies and are amenable to a variety of research uses after simple reconstitution. The components in the extracts span broad metabolic classes (e.g., amino and organic acids, sugar phosphates, coenzymes), biochemical pathways (e.g., citrate and glyoxylate cycle, amino acid and nucleotide metabolism), and cellular/molecular processes (e.g., immune system, blood coagulation, DNA metabolism).

Overview

Uses
- Targeted or untargeted, MS-based analysis
- Method and instrument QC
- Metabolite quantitation
- Biomarker discovery and verification

Benefits
- Reduces measurement uncertainty
- Improves precision and accuracy
- Enhances identification confidence
- Decreases development time and cost

Description

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Description</th>
<th>Price (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO1</td>
<td>Metabolite Yeast Extract (13C, 98%)</td>
<td>$500</td>
</tr>
<tr>
<td>ISO1-UNL</td>
<td>Metabolite Yeast Extract (unlabeled)</td>
<td>$300</td>
</tr>
</tbody>
</table>

Dry extract of $>2 \times 10^9$ *Pichia pastoris* cells (~15 mg). Produced by ISOTopic Solutions (isotopic-solutions.com).

Specifications

- **Kit contents**
 - 13C-labeled or unlabeled yeast extract
 - detailed user manual (on USB)

- **Shipping**
 - Dried extract in 15 mL Falcon™ tube on dry ice

- **Storage**
 - -80°C, protected from light

- **Isotopic enrichment**
 - 98% (via LC-MS for characteristic metabolites)

- **Chemical purity**
 - 99% (via HPLC for characteristic metabolites)

References

Cambridge Isotope Laboratories, Inc.
North America: 1.800.322.1174 cilsales@isotope.com | International: +1.978.749.8000 intlsales@isotope.com | fax: 1.978.749.2768 | isotope.com

MET_RSCH_YEAST (6/11/19)
Supersedes all previously published literature