EasyXpress® Large-Scale Synthesis Handbook

For large-scale production of proteins by in vitro translation for structural analysis

EasyXpress Protein Synthesis Mega Kit

EasyXpress NMR Protein Synthesis Kits

EasyXpress NMR Uniform Labeling Kits

CIL is pleased to offer the following EasyXpress NMR Uniform Labeling Kits:

<table>
<thead>
<tr>
<th>CIL Catalog No.</th>
<th>Description</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>QIA-32531-N</td>
<td>EasyXpress NMR (U-15N) Kit</td>
<td>6</td>
</tr>
<tr>
<td>QIA-32532-CN</td>
<td>EasyXpress NMR (U-15N, U-13C) Kit</td>
<td>7</td>
</tr>
<tr>
<td>QIA-32535-CDN</td>
<td>EasyXpress NMR (U-15N, U-13C, U-D) Kit</td>
<td>7</td>
</tr>
</tbody>
</table>

To place an order call 1.800.322.1174 or visit our website at www.isotope.com
QIAGEN Sample and Assay Technologies

QIAGEN is the leading provider of innovative sample and assay technologies, enabling the isolation and detection of contents of any biological sample. Our advanced, high-quality products and services ensure success from sample to result.

QIAGEN sets standards in:

- Purification of DNA, RNA, and proteins
- Nucleic acid and protein assays
- microRNA research and RNAi
- Automation of sample and assay technologies

Our mission is to enable you to achieve outstanding success and breakthroughs. For more information, visit www.qiagen.com.
Contents

Important Note 4
Kit Contents 5
Storage 8
Product Use Limitations 8
Product Warranty and Satisfaction Guarantee 9
Technical Assistance 9
Safety Information 10
Quality Control 10
Introduction 11
The EasyXpress System 14
Large-Scale Protein Synthesis for Structural Proteomics Projects 14
DNA Templates 15
Purification of In Vitro-Synthesized Proteins 19

Protocols
- Large-Scale Protein Synthesis Using the EasyXpress Protein Synthesis Mega Kit 21
- Large-Scale (5 ml) and Medium-Scale (1 ml) Protein Synthesis Using the EasyXpress NMR Protein Synthesis Kit 25
- Large-Scale (5 ml) and Medium-Scale (1 ml) Protein Synthesis Using EasyXpress Single Amino Acid Substitution NMR Kits 31
- Large-Scale (5 ml) and Medium-Scale (1 ml) Protein Synthesis Using the EasyXpress NMR (U-15N), (U-15N, U-13C), and (U-15N, U-13C, U-D) Kit 37

Purifying Affinity-tagged Proteins 42
Purifying 6xHis-tagged Proteins Using Ni-NTA Superflow 42
Purifying Strep-tagged Proteins Using Strep-Tactin Superflow 43
Troubleshooting Guide 45
Appendix A: Optimization of EasyXpress Reactions 48
Appendix B: Inhibition of Isotope Scrambling 51
Appendix C: Partial Back Protonation of Deuterated Amino Acids 53
Appendix D: Buffer Compositions 54
References 55
Ordering Information 57
Important Note

Dear EasyXpress® NMR Uniform Labeling Kit user,

We wish to inform you that the storage information for the EasyXpress NMR (U-15N) Kit (CIL Cat. No. QIA-32531-N), the EasyXpress NMR (U-15N, U-13C) Kit (CIL Cat. No. QIA 32532-CN), and the EasyXpress NMR (U-15N, U-13C, U-D) Kit (CIL Cat. No. QIA-32535-CDN) was omitted from the EasyXpress Large-Scale Synthesis Handbook, page 8. The correct information can be found below:

We apologize for any inconvenience.

Best regards,

CIL, QIAGEN
Kit Contents

EasyXpress Protein Synthesis Mega Kit

<table>
<thead>
<tr>
<th>Catalog no.</th>
<th>32516</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of reactions</td>
<td>2 x 5 ml</td>
</tr>
</tbody>
</table>

Box 1 of 2

- **E. coli Extract (Mega) (white screw cap)**
 - 2 x 1.75 ml

- **Reaction Buffer without methionine (12 ml reaction flask)**
 - 2 x 1.9 ml

- **Methionine (60 mM) (green screw-cap)**
 - 2 x 0.3 ml

- **Feeding Solution (Mega) (blue screw cap)**
 - 2 x 1.7 ml

- **Energy Mix (red screw cap)**
 - 2 x 1.1 ml

- **RNase-Free Water (colorless screw-cap)**
 - 1 x 1.9 ml

Equilibration/Elution Buffer

- 2 x 59 ml

Box 2 of 2

- **Gel Filtration Columns, Bed Volume 17 ml**
 - 2 columns

- **Reaction Flasks (50 ml)**
 - 2 flasks

- **Handbook**
 - 1

EasyXpress NMR Protein Synthesis Kit

<table>
<thead>
<tr>
<th>Catalog no.</th>
<th>32526</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of reactions</td>
<td>2 x 5 ml or 10 x 1 ml</td>
</tr>
</tbody>
</table>

Box 1 of 3

- **E. coli Extract (NMR) (yellow screw-cap)**
 - 2 x 1.75 ml

- **Reaction Buffer without amino acids (12 ml reaction flask)**
 - 2 x 1.9 ml

- **Feeding Solution (NMR) (violet screw cap)**
 - 2 x 0.9 ml

- **Energy Mix (red screw cap)**
 - 2 x 1.1 ml

- **RNase-Free Water (colorless screw-cap)**
 - 1 x 1.9 ml

- **Equilibration/Elution Buffer**
 - 2 x 59 ml
Box 2 of 3

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gel Filtration Columns, Bed Volume 17 ml</td>
<td>2 columns</td>
</tr>
<tr>
<td>Reaction Flasks</td>
<td>2 flasks</td>
</tr>
<tr>
<td>Handbook</td>
<td>1</td>
</tr>
</tbody>
</table>

Box 3 of 3

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino Acid Mix (NMR) (orange screw-cap)</td>
<td>2 x 1.275 ml</td>
</tr>
<tr>
<td>Threonine (240 mM) (green screw-cap)</td>
<td>2 x 85 µl</td>
</tr>
<tr>
<td>Lysine (240 mM) (green screw-cap)</td>
<td>2 x 85 µl</td>
</tr>
<tr>
<td>Arginine (240 mM) (green screw-cap)</td>
<td>2 x 85 µl</td>
</tr>
<tr>
<td>Valine (240 mM) (green screw-cap)</td>
<td>2 x 85 µl</td>
</tr>
<tr>
<td>Serine (240 mM) (green screw-cap)</td>
<td>2 x 85 µl</td>
</tr>
</tbody>
</table>

EasyXpress NMR (U-15N) Kit

For 2 x 5 ml or 10 x 1 ml reactions

<table>
<thead>
<tr>
<th>CIL Cat. No.</th>
<th>QIA-32531-N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box 1 of 3</td>
<td>as cat. no. 32526</td>
</tr>
<tr>
<td>Box 2 of 3</td>
<td>as cat. no. 32526</td>
</tr>
<tr>
<td>Box 3 of 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino Acid Mix (U-15N, 97-99 %) (glass bottle); All amino acids labeled</td>
<td>115 mg</td>
</tr>
</tbody>
</table>
EasyXpress NMR (U-15N, U-13C) Kit
For 2 x 5 ml or 10 x 1 ml reactions

<table>
<thead>
<tr>
<th>CIL Cat. No.</th>
<th>QIA-32532-CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box 1 of 3 — as cat. no. 32526</td>
<td></td>
</tr>
<tr>
<td>Box 2 of 3 — as cat. no. 32526</td>
<td></td>
</tr>
<tr>
<td>Box 3 of 3</td>
<td>Amino Acid Mix (U-15N, U-13C, 97-99 %) (glass bottle); All amino acids labeled 115 mg</td>
</tr>
</tbody>
</table>

EasyXpress NMR (U-15N, U-13C, U-D) Kit
For 2 x 5 ml or 10 x 1 ml reactions

<table>
<thead>
<tr>
<th>CIL Cat. No.</th>
<th>QIA-32535-CDN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box 1 of 3 — as Cat. no. 32526</td>
<td></td>
</tr>
<tr>
<td>Box 2 of 3 — as Cat. no. 32526</td>
<td></td>
</tr>
<tr>
<td>Box 3 of 3</td>
<td>Amino Acid Mix (U-15N, U-13C, U-D 97 – 99 %) (glass bottle); All amino acids labeled 115 mg</td>
</tr>
</tbody>
</table>

EasyXpress NMR Protein Synthesis Kit — indicated amino acid
For 2 x 5 ml reactions or 10 x 1 ml reactions

<table>
<thead>
<tr>
<th>Catalog no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EasyXpress NMR Protein Synthesis Kit w/o A (Ala) 32530</td>
</tr>
<tr>
<td>EasyXpress NMR Protein Synthesis Kit w/o C (Cys) 32533</td>
</tr>
<tr>
<td>EasyXpress NMR Protein Synthesis Kit w/o E (Glu) 32534</td>
</tr>
<tr>
<td>EasyXpress NMR Protein Synthesis Kit w/o G (Gly) 32536</td>
</tr>
<tr>
<td>EasyXpress NMR Protein Synthesis Kit w/o H (His) 32537</td>
</tr>
<tr>
<td>EasyXpress NMR Protein Synthesis Kit w/o I (Ile) 32538</td>
</tr>
<tr>
<td>EasyXpress NMR Protein Synthesis Kit w/o L (Leu) 32539</td>
</tr>
</tbody>
</table>
Storage

The EasyXpress Protein Synthesis Mega Kit Box 1 and the EasyXpress NMR Protein Synthesis Kit Boxes 1 and 3 are shipped on dry ice.

The EasyXpress Mega and NMR Protein Synthesis Box 2 are shipped at ambient temperature. Upon arrival, store the boxes according to Table 1. When stored under these conditions and handled correctly, both kits can be stored for at least 1 year without showing any reduction in performance.

Table 1. Storage of EasyXpress Kits

<table>
<thead>
<tr>
<th>Box number</th>
<th>Storage temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–70°C to –80°C</td>
</tr>
<tr>
<td>2</td>
<td>2–8°C</td>
</tr>
<tr>
<td>3</td>
<td>–20°C or –80°C</td>
</tr>
</tbody>
</table>

Product Use Limitations

EasyXpress Kits are intended for molecular biology applications. These products are neither intended for the diagnosis, prevention, or treatment of a disease, nor have they been validated for such use either alone or in combination with other products. Therefore, the performance characteristics of the products for clinical use (i.e., diagnostic, prognostic, therapeutic, or blood banking) are unknown.
Product Warranty and Satisfaction Guarantee

QIAGEN® guarantees the performance of all products in the manner described in our product literature. The purchaser must determine the suitability of the product for its particular use. Should any product fail to perform satisfactorily due to any reason other than misuse, QIAGEN will replace it free of charge or refund the purchase price. We reserve the right to change, alter, or modify any product to enhance its performance and design. If a QIAGEN product does not meet your expectations, simply call your local Technical Service Department or distributor. We will credit your account or exchange the product — as you wish. Separate conditions apply to QIAGEN scientific instruments, service products, and to products shipped on dry ice. Please inquire for more information.

A copy of QIAGEN terms and conditions can be obtained on request, and is also provided on the back of our invoices. If you have questions about product specifications or performance, please call QIAGEN Technical Services or your local distributor (see back cover or visit www.qiagen.com).

Technical Assistance

At QIAGEN, we pride ourselves on the quality and availability of our technical support. Our Technical Service Departments are staffed by experienced scientists with extensive practical and theoretical expertise in sample and assay technologies and the use of QIAGEN products. If you have any questions or experience any difficulties regarding EasyXpress Kits or QIAGEN products in general, please do not hesitate to contact us.

QIAGEN customers are a major source of information regarding advanced or specialized uses of our products. This information is helpful to other scientists as well as to the researchers at QIAGEN. We therefore encourage you to contact us if you have any suggestions about product performance or new applications and techniques.

For technical assistance and more information, please see our Technical Support Center at www.qiagen.com/Support or call one of the QIAGEN Technical Service Departments or local distributors (see back cover or visit www.qiagen.com).
Safety Information

When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate material safety data sheets (MSDSs). These are available online in convenient and compact PDF format at www.qiagen.com/support/MSDS.aspx where you can find, view, and print the MSDS for each QIAGEN kit and kit component.

24-hour emergency information

Emergency medical information in English, French, and German can be obtained 24 hours a day from:

Poison Information Center Mainz, Germany

Tel: +49-6131-19240

Quality Control

In accordance with QIAGEN’s ISO-certified Quality Management System, each lot of EasyXpress Kits is tested against predetermined specifications to ensure consistent product quality.
Introduction

In vitro translation is a widely used tool for the production of recombinant proteins that can be used for a wide variety of downstream applications, including activity assays, protein–protein interaction studies, the expression and analysis of open reading frames, and structural and mutational analysis. Large-scale in vitro translation reactions enable the rapid production of large amounts of recombinant proteins that are suitable for a range of downstream applications, including structural analysis. QIAGEN has therefore developed EasyXpress products for large-scale production of up to 10 mg of recombinant protein.

The EasyXpress Protein Synthesis Mega Kit allows rapid production of milligram amounts of recombinant protein for a wide range of applications, including comprehensive functional studies, aptamer selection studies, and animal immunization. In addition, the kit allows incorporation of the unnatural, cytotoxic amino acid selenomethionine. The incorporation of selenomethionine into in vitro synthesized proteins facilitates phasing of crystal protein structures and atomic structure determination using X-ray crystallography (1, 2).

The incorporation of stable-isotope–labeled amino acids into in vitro synthesized proteins allows structural determination in solution by high-resolution nuclear magnetic resonance (NMR) spectroscopy (1, 3, 4). The EasyXpress NMR (U-15N), (U-15N, U-13C), and (U-15N, U-13C, U-D) Kits allow the cell-free expression of uniformly, stable-isotope labeled proteins with the indicated single, double or triple label. In contrast to in vivo expression in D2O-based medium, where deuterated proteins are usually expressed with significantly lower yields, cell-free expression of triple-labeled proteins results in consistent or enhanced yields compared to the unlabeled protein (Figure 1). This, coupled with the low amount of labeled amino acids required in cell-free expression in general, allows the application of uniform and amino acid-specific labeling methods in a more efficient and economical manner than for in vivo expression.
Protein yields: 450 µg/ml | 410 µg/ml | 610 µg/ml | 640 µg/ml

Figure 1. Efficient synthesis and purification of SI-labeled 6xHis-Interleukin-1β.
Unlabeled and uniformly SI-labeled 6xHis-tagged human Interleukin-1β samples were
synthesized using the EasyXpress NMR Protein Synthesis Kit (1 ml reactions) and purified under
native conditions using Ni-NTA Superflow. C: Crude lysate; F: Flow-through fraction;
W: Wash fraction; E: Eluate. Protein yield was determined by Bradford assay.

Advances in NMR technologies (e.g., Micro- and Cryoprobes) allow the use of
lower amounts of labeled protein for NMR data acquisition (5), proteins can
optionally be expressed in medium-scale (1 ml) or large-scale (5 ml) EasyXpress
NMR Protein Synthesis reactions (Figure 2).

Figure 2. 1H-15N HSQC spectra of uniformly SI-labeled 6xHis-tagged human
Interleukin-1β samples synthesized with the EasyXpress NMR Protein Synthesis Kit. A
Uniformly 15N-labeled 6xHis-IL-1β. B Uniformly 15N,13C-labeled 6xHis-IL-1β. C Uniformly
13C,15N, 2H-labeled 6xHis-IL-1β. NMR spectra were acquired at 600 MHz using a 1.7 mm H-
C/N Micro Cryoprobe from Bruker Biospin.
Triple labeling with 15N, 13C and 2H is used to facilitate NMR spectroscopy of proteins of above ca. 25 kDa in size. Complete aliphatic 2H incorporation results in significant reduction of relaxation times of 13C, leading to improved resolution and sensitivity for NMR assignment studies (Figure 3).

![Figure 3. 1H-13C HSQC spectra of uniformly SI-labeled 6xHis-tagged human Interleukin-1β samples synthesized with the EasyXpress NMR Protein Synthesis Kit.](image)

The virtual absence of signals in spectrum A demonstrates the high level of deuteration. An average deuteration level of 90–95% is achieved. See Appendix C for information regarding back protonation. NMR spectra were acquired at 600 MHz using a 1.7 mm H-C/N Micro Cryoprobe from Bruker Biospin.

The EasyXpress NMR Protein Synthesis Kit allows incorporation of the stable-isotope–labeled amino acids threonine, arginine, valine, serine, or lysine. EasyXpress NMR Kits are also available for incorporation of other amino acids with an isotopic label.

By expressing a protein with all 20 SI-labeled amino acids individually followed by NMR spectroscopic analysis, it was demonstrated that scrambling (distribution of isotopic label to other amino acids due to residual amino acid metabolism) is undetectable upon protein production in the EasyXpress E. coli extract for 16 amino acids (6). This is in stark contrast to expression in living cells where clean amino acid-specific labeling is difficult to achieve. Residual metabolizing activity under in vitro expression conditions may be observed in the cases of Gln-, Glu-, Asn-, and Asp-selective labeling, which may lead to a degree of isotope scrambling. The use of inhibitors of the amino acid metabolism, however, can suppress scrambling in these cases (Figure 5, page 52; for more detailed information about scrambling see Appendix B).
The EasyXpress System

EasyXpress Mega and NMR Kits use highly productive *E. coli* lysates, which contain all translational machinery components (i.e., ribosomes, ribosomal factors, tRNAs, aminoacyl-tRNA synthetases, etc.) as well as T7 RNA polymerase. It is a coupled transcription–translation system that can be used to express full-length proteins from T7 or *E. coli* promoters in a batch reaction using supercoiled DNA templates. The EasyXpress *E. coli* lysates are particularly suitable for expression of stable-isotope labeled proteins since the endogenous amino acids are almost completely depleted.

Large-Scale Protein Synthesis for Structural Proteomics Projects

To generate preparative yields of protein, the high-molecular–weight translation components in the reaction are recycled after a 1-hour batch synthesis and used in a second 1-hour batch synthesis (see flowchart, page 16). The recycling procedure is performed using a gel-filtration column. During the recycling step, low-molecular–weight reaction components (e.g., inorganic phosphate) that inhibit the in vitro translation reaction are removed from the high-molecular–weight translation components. Before the second in vitro translation reaction, the recycled high-molecular–weight translation components are supplemented with missing components, such as energy providers and amino acids. The short (in contrast to other [semi-]continuous systems) reaction time of 2 hours delivers high-quality proteins and reduces detrimental effects, such as degradation or precipitation. In addition, the short reaction time minimizes isotope exchange and breakdown or metabolism of isotopically labeled amino acids.

The EasyXpress Mega and NMR Protein Synthesis Kits yield up to 10 mg of soluble recombinant protein from a reaction volume of 2 x 5 ml. Before using the EasyXpress Mega or NMR Protein Synthesis Kit, we recommend evaluating a plasmid expression template’s suitability to produce soluble protein in high yields in a small-scale test reaction using the EasyXpress Protein Synthesis Kits (cat. no. 32501, 32502, or 32506; see Workflow, page 13). The relative protein yield (mg protein/ml reaction) typically increases by a factor of two in a large-scale reaction.

Although the EasyXpress system has been developed to give the highest yields of active and soluble protein, it may be possible to further optimize the synthesis procedure for individual proteins, e.g., the total expression or the solubility may be increased by including additives in the synthesis reaction (see EasyXpress Protein Synthesis Workflow and Appendix A).
DNA Templates

EasyXpress kits can be used to express proteins from a variety of DNA templates, as long as they contain a T7 or other strong E. coli promoter (e.g., T5) upstream from the coding sequence and a ribosome binding site. We recommend using supercoiled DNA plasmids as expression vectors. Vectors such as pIX 3.0 or pET3d (Novagen) are a suitable basis for generating expression constructs.

QIAgenes Expression Kits E. coli can be used for high-level expression of recombinant proteins in E. coli expression systems. QIAgenes Expression Constructs E. coli are plasmids containing expression-optimized, synthetic, custom protein coding sequences that are used for in vivo expression in E. coli cells or E. coli-based cell-free expression systems. (For further information refer to the QIAgenes E. coli Handbook.) In most cases, QIAgenes Expression
Constructs show significantly higher expression levels than constructs carrying the wild-type coding sequence.

Plasmid DNA

T7 promoter-based constructs, including the pET plasmid series (Novagen), are a suitable basis for generating expression constructs. Such vectors provide mRNA-stabilizing secondary structures in the 5’ and 3’ untranslated regions that play an important role in increasing the efficiency of expression.

Suitable vectors are not restricted to T7 promoter-based constructs. QIAGEN’s pQE vectors have also been used successfully with EasyXpress E. coli-based kits.

Before use in a large-scale reaction, each expression vector should be tested in small-scale reactions to ensure efficient protein synthesis. Table 2 provides an overview of which vectors have successfully been used with EasyXpress kits.

Table 2. Vectors successfully used with EasyXpress Kits

<table>
<thead>
<tr>
<th>Vector</th>
<th>Promoter</th>
<th>Protein(s) successfully synthesized</th>
</tr>
</thead>
<tbody>
<tr>
<td>pIX3.0</td>
<td>T7</td>
<td>TFIIAγ, MKK3, HLFA</td>
</tr>
<tr>
<td>pET3d</td>
<td>T7</td>
<td>TBP</td>
</tr>
<tr>
<td>pET15b</td>
<td>T7</td>
<td>Cytohesin-1/SEC7*</td>
</tr>
<tr>
<td>pET43</td>
<td>T7</td>
<td>NusA</td>
</tr>
<tr>
<td>pIX2.0†</td>
<td>T7</td>
<td>EF-Ts</td>
</tr>
<tr>
<td>TAGZyme pQE-2</td>
<td>T5</td>
<td>TNFα</td>
</tr>
<tr>
<td>pQE-30</td>
<td>T5</td>
<td>Thioredoxin</td>
</tr>
<tr>
<td>pIVEX series</td>
<td>T7</td>
<td>GFP</td>
</tr>
<tr>
<td>pQE-T7</td>
<td>T7</td>
<td>TNFα</td>
</tr>
<tr>
<td>PCR product of RiNA Linear Template Kit Large Scale‡</td>
<td>T7</td>
<td>Several different proteins</td>
</tr>
</tbody>
</table>

* Expression construct kindly provided by Michael Blind, NascaCell IP GmbH, Munich, Germany.
† Available from QIAGEN Technical Services upon request. This vector is also suitable for cloning PCR templates generated using the EasyXpress Linear Template Kit.
‡ RiNA Linear Template Kit Large Scale, His-Tag or Strep-Tag (RiNA, cat. no. C1213-05, C1214-05). Using these specialized PCR products will give similar protein yields (http://www.rina-gmbh.eu/).
Purification of plasmid DNA expression templates

Greatest protein yields are obtained by using template DNA of the highest purity. High-purity plasmid DNA can easily be obtained with the QIAGEN HiSpeed®, QIAfilter, and QIAGEN Plasmid Kits. DNA prepared using the standard alkaline lysis method described by Sambrook, Fritsch and Maniatis (7) may be sufficiently pure, but DNA must be free of RNases.

For EasyXpress Mega and NMR protein synthesis reactions, the concentration of plasmid DNA in each in vitro translation reaction should be 10 nM, which corresponds to 20 μg (1 ml reaction) or 100 μg (5 ml reaction) of a 3 kb plasmid, respectively.

When using a linear template (page 15), 280 μl PCR product should be used for a 1 ml reaction (corresponds to approximately 28 μg) or 1.4 ml for a 5 ml reaction (corresponds to approximately 140 μg).
EasyXpress Large-Scale Procedure

1. Initial in vitro protein synthesis reaction in 10 ml tube
2. Removal of low-molecular-weight inhibitors by gel filtration
3. Add Feeding Solution and Energy Mix
4. Second in vitro protein synthesis reaction in 50 ml tube
5. Purification, e.g., using Ni-NTA Superflow (not supplied)

Pure recombinant protein
Purification of In Vitro-Synthesized Proteins

In vitro-synthesized proteins that carry a 6xHis tag or Strep-tag™ can be easily purified using Ni-NTA Superflow or Strep-Tactin™ Superflow, respectively. For downstream applications demanding ultrapure protein preparations, proteins carrying both tags (His-Strep-tagged proteins) can be purified using a Ni-NTA matrix followed by a second purification using a Strep-Tactin matrix. For purification protocols, see page 37.

Purification of tagged proteins using the 6xHis-tag–Ni-NTA interaction

His-tagged protein purification is based on the remarkable selectivity and high affinity of patented Ni-NTA (nickel-nitrilotriacetic acid) resin for proteins containing an affinity tag of six consecutive histidine residues — the 6xHis tag. NTA, which has four chelation sites for nickel ions, binds nickel more tightly than metal-chelating purification systems that only have three sites available for interaction with metal ions. The extra chelation site prevents nickel-ion leaching; providing a greater binding capacity, and high-purity protein preparations (8, 9). Figure 4 shows SDS-PAGE analysis of column fractions obtained from the purification of two 6xHis-tagged proteins, EF-Ts and hTNF-alpha, which were expressed using the EasyXpress Protein Synthesis Mega Kit.

Purification using the Strep-tag–Strep-Tactin interaction

The Strep-tag allows affinity chromatography on immobilized Strep-Tactin under physiological conditions. Strep-tag II is a short peptide (8 amino acids, WSHPQFEK), which binds with high selectivity to Strep-Tactin, an engineered streptavidin. The binding affinity of the Strep-tag to Strep-Tactin (Kd = 1 μM) is nearly 100 times higher than to streptavidin. After a short washing step, gentle elution of purified recombinant protein is performed by addition of low concentrations (2.5 mM) of biotin or desthiobiotin. Desthiobiotin is an inexpensive, reversibly binding, and stable analog of biotin, the natural ligand of streptavidin.

Two-step affinity purification of His-Strep-tagged proteins

The initial step of His-Strep-tagged protein purification is based on the proven 6xHis-tag Ni-NTA interaction. After elution from a Ni-NTA matrix using imidazole, recombinant proteins (which also carry the Strep-tag II epitope) are loaded directly onto a Strep-Tactin Matrix. Protein is eluted from the Strep-Tactin matrix using either biotin or desthiobiotin. This two-step affinity purification delivers ultrapure (>98% pure) protein.
Figure 4. Efficient large-scale protein synthesis and subsequent purification. A 6xHis-tagged EF-Ts and B human TNF-alpha were synthesized using the EasyXpress Protein Synthesis Mega Kit and purified under native conditions from the second synthesis reaction using Ni-NTA Superflow. EF-Ts and TNF-α were synthesized using the pIX 2.0 and TAGZyme pQE-2 vectors, respectively. Protein was visualized using Coomassie® Stain. C: Crude lysate; F: Flow-through fraction; W: Wash fractions.
Protocol: Large-Scale Protein Synthesis Using the EasyXpress Protein Synthesis Mega Kit

This protocol is suitable for the large-scale in vitro production of unlabeled recombinant proteins (using the supplied methionine solution) from plasmid DNA in a two-stage procedure. It can also be used for production of selenomethionine-labeled proteins (selenomethionine must be supplied by the user, see below).

Equipment and reagents to be supplied by the user

- Plasmid DNA expression template encoding the protein of interest. The plasmid must contain a T7 or other strong E. coli promoter and a ribosome binding site (see page 15)
- **Optional:** Selenomethionine (e.g., Sigma cat. no. S3132)
- Shaking water bath
- **Optional:** QIARack (cat. no. 19015)

Important points before starting

- The in vitro translation system is extremely sensitive to nuclease contamination. Always wear gloves and use RNase- and DNase-free reaction tubes and if possible use filter pipet tips.
- E. coli extracts are provided as two individual aliquots in single tubes. Once thawed, use E. coli extract within 4 hours.
- Except for the actual transcription-translation incubation and the recycling procedure with the gel filtration column, all handling steps should be carried out on ice.
- The recommended incubation temperature for protein synthesis is 37°C, but lower incubation temperatures may improve protein solubility in some cases.
- For protein synthesis reactions, it is important to follow the order of addition for each component given in the protocol and tables.
- Do not use glass pipets at any stage of the procedure.

Procedure

Initial in vitro synthesis reaction

1. Thaw and store E. coli Extract (Mega), Methionine, Feeding Solution (Mega), and Energy Mix on ice. Thaw RNase-free water and Equilibration/Elution Buffer at room temperature (15–25°C).
2. Thaw Reaction Buffer (–Methionine) in the supplied 12 ml plastic tube on ice and vortex thoroughly.

3. Add 100 μl of a 60 mM solution of Methionine (green screw-cap) or selenomethionine (not supplied) to the Reaction Buffer in the 12 ml plastic tube.
 The 12 ml tube will serve as the reaction vessel for the initial protein synthesis reaction.

4. Add 50 pmol of plasmid DNA expression template to the Reaction Buffer.
 This corresponds to a final concentration of 10 nM (100 μg of a 3 kb plasmid) in the final 5 ml reaction volume.

5. Make up the reaction volume to 3.25 ml with RNase-free water.
 Use the pipetting scheme in Table 3 to calculate the required volume. It is important to follow the order of addition given in the table.

6. Add 1.75 ml *E. coli* Extract (Mega) to the reaction.
 Important: Do not use a glass pipet to transfer the *E. coli* extract as reaction components may adhere to the glass surface.

7. Gently mix the reaction by pipetting up and down.

8. Incubate the reaction in a water-bath at 37°C with gentle shaking for 1 h.

Table 3. Initial protein synthesis reaction components

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction Buffer (–Methionine)</td>
<td>1.9 ml</td>
</tr>
<tr>
<td>60 mM Methionine or selenomethionine</td>
<td>100 μl</td>
</tr>
<tr>
<td>Plasmid DNA</td>
<td>Varies</td>
</tr>
<tr>
<td>RNase-free water</td>
<td>Varies</td>
</tr>
<tr>
<td>E. coli Extract (Mega)</td>
<td>1.75 ml</td>
</tr>
<tr>
<td>Total</td>
<td>5 ml</td>
</tr>
</tbody>
</table>
Recycling the components of the initial synthesis reaction

Steps 9–13 can be performed at room temperature (15–25°C).

9. Immediately after starting protein synthesis reaction, prepare and equilibrate a Gel Filtration Column. Unscrew and remove the bottom closure and peel off the top seal. Allow the storage buffer to drain out. Equilibrate the column by applying 3 x 17 ml aliquots of Equilibration Buffer and allowing the buffer to flow through the column.
 The column can be placed in a QIArack during equilibration.

10. After 1 h incubation (step 8), centrifuge the tube containing the protein synthesis reaction at 10,000 x g for 3 min.
 This centrifugation separates precipitates and insoluble target protein.

11. Carefully pipet the entire supernatant from step 10 onto the equilibrated Gel Filtration Column.
 Important: Do not use a glass pipet to transfer the supernatant as reaction components may adhere to the glass surface.

12. After the supernatant has entered the column, pipet 1 ml Equilibration/Elution Buffer onto the column. Discard the flow-through fraction.

13. Place a 50 ml Reaction Flask (supplied) under the column and pipet 7 ml Equilibration/Elution Buffer onto the column. Collect the flow-through fraction in the Reaction Flask.
 This reaction flask will serve as the reaction vessel for the second protein synthesis reaction. The flow-through fraction contains the recycled high-molecular-weight reaction components.

Second in vitro synthesis reaction

14. Add 200 µl of a 60 mM solution of Methionine (green screw-cap) or selenomethionine (not supplied) to the protein synthesis reaction (flow-through fraction from step 13).

15. Thoroughly vortex the tube containing Feeding Solution (Mega) and add 1700 µl to the protein synthesis reaction.
 There may be a precipitate visible in the tube containing Feeding Solution. This will not adversely affect the reaction.

16. Add 1100 µl Energy Mix (red screw-cap) to the protein synthesis reaction.

17. Gently mix the reaction by pipetting up and down.
 Table 4 summarizes the components of the second synthesis reaction. It is important to follow the order of addition given in the table.
18. Incubate the reaction in a water-bath at 37°C with gentle shaking for 1 h.

Table 4. Second protein synthesis reaction components

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eluate from gel filtration column</td>
<td>7 ml</td>
</tr>
<tr>
<td>60 mM Methionine or selenomethionine</td>
<td>200 μl</td>
</tr>
<tr>
<td>Feeding Solution (Mega)</td>
<td>1.7 ml</td>
</tr>
<tr>
<td>Energy Mix</td>
<td>1.1 ml</td>
</tr>
<tr>
<td>Total</td>
<td>10 ml</td>
</tr>
</tbody>
</table>
Protocol: Large-Scale (5 ml) and Medium-Scale (1 ml) Protein Synthesis Using the EasyXpress NMR Protein Synthesis Kit

This protocol is suitable for the in vitro production of recombinant, isotopically labeled proteins from plasmid DNA or PCR product using the EasyXpress NMR Protein Synthesis Kit in a two-stage procedure. Proteins are labeled by the addition of isotopically labeled amino acids to the protein synthesis reaction. The Amino Acid Mix (NMR) supplied contains all required amino acids except threonine, arginine, valine, serine, and lysine. These amino acids are supplied individually and can therefore be added to the master mix in a labeled or unlabeled form.

For protein synthesis using other single amino acid substitution kits (EasyXpress NMR Protein Synthesis Kit – X, where X = Ala, Cys, Glu, Gly, His, Ile, Leu, Met, Phe, Pro, Trp, or Tyr), use protocol on page 31.

Recent improvements in NMR technologies (e.g., cryoprobes) allow the use of lower amounts of labeled proteins (5), proteins can be expressed using 1 ml reactions instead of 5 ml reactions. It is advisable to first test and optimize the amount of expressed protein using the EasyXpress Protein Synthesis Kit.

Equipment and reagents to be supplied by the user

- For the 1 ml protocol: NAP-10 columns for recycling step (e.g., GE Healthcare, cat. no. 17-0854-01) and 5 ml plastic tubes
- Plasmid expression DNA template encoding the protein of interest. The plasmid must contain a T7 or strong E. coli promoter and a ribosome binding site (see page 15)
- Alternatively, PCR product produced with the RiNA Linear Template Kit Large Scale, His-Tag or Strep-Tag (RiNA, cat. no. C1213-05, C1214-05) can be used as template for protein synthesis. This saves time by avoiding cloning procedures. Using these specialized PCR products will give similar protein yields (http://www.rina-gmbh.eu/)
- Isotopically labeled threonine, arginine, valine, serine or lysine
- Shaking water bath or thermomixer
- **Optional:** QIArack (cat. no. 19015)

Important points before starting

- The in vitro translation system is extremely sensitive to nuclease contamination. Always wear gloves and use RNase- and DNase-free reaction tubes and filter pipet tips.
E. coli extracts are provided as two individual aliquots in single tubes (2 x 5 ml reactions). Once thawed, use E. coli extract within 4 hours. If performing 1 ml reactions, all constituents of Box 1 and Box 3 must be vortexed thoroughly and aliquotted in RNase-free reaction tubes (except for the RNase-free water). Do not refreeze and thaw more than twice. Ensure the reaction buffer is carefully aliquoted so that the reaction vial is not overfilled.

All steps should be carried out on ice, except for the actual transcription–translation incubation and the recycling procedure with the gel filtration column.

The recommended incubation temperature for protein synthesis is 37°C; however, lower incubation temperatures may improve protein solubility in some cases.

For protein synthesis reactions, it is important to follow the order of addition for each component shown in the protocol and tables.

Do not use glass pipets at any stage of the procedure.

■ denotes values for the EasyXpress NMR Large-Scale protocol (5 ml);
▲ denotes values for the EasyXpress NMR Medium-Scale (1ml) protocol.

Procedure

Preparation of amino acid mix

1. Thaw Amino Acid Mix (NMR) and the individual amino acids that will form the master mix. If using the ▲1ml protocol, prepare 10 aliquots. Freeze unused aliquots at –20°C or –80°C.
2. Dissolve isotopically labeled amino acids in RNase-free water to give a concentration of 240 mM.
3. Carefully vortex the isotopically labeled amino acid solution and pipet ■ 85 µl into each vial of Amino Acid Mix thawed in step 1 or ▲17 µl to 255 µl of Amino Acid Mix thawed in step 1.

Table 5 shows a pipetting scheme for a typical master mix.
Table 5. Amino acid master mixes for unlabeled and 13C threonine-labeled protein synthesis reactions

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Unlabeled reaction</th>
<th>Isotopically labeled reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino Acid Mix (NMR)</td>
<td>1.275 ml / 255 μl</td>
<td>1.275 ml / 255 μl</td>
</tr>
<tr>
<td>Serine (240 mM)</td>
<td>85 μl / 17 μl</td>
<td>85 μl / 17 μl</td>
</tr>
<tr>
<td>Arginine (240 mM)</td>
<td>85 μl / 17 μl</td>
<td>85 μl / 17 μl</td>
</tr>
<tr>
<td>Valine (240 mM)</td>
<td>85 μl / 17 μl</td>
<td>85 μl / 17 μl</td>
</tr>
<tr>
<td>Lysine (240 mM)</td>
<td>85 μl / 17 μl</td>
<td>85 μl / 17 μl</td>
</tr>
<tr>
<td>Threonine (240 mM)</td>
<td>85 μl / 17 μl</td>
<td>–</td>
</tr>
<tr>
<td>13C-labeled threonine (240 mM)</td>
<td>–</td>
<td>85 μl / 17 μl</td>
</tr>
<tr>
<td>Total</td>
<td>1.7 ml / 340 μl</td>
<td>1.7 ml / 340 μl</td>
</tr>
</tbody>
</table>

Initial in vitro synthesis reaction

4. Thaw and store E. coli Extract (NMR), Feeding Solution (NMR), and Energy Mix on ice. Thaw RNase-free water and Equilibration/Elution Buffer at room temperature (15–25°C).

5. If performing the medium-scale protocol, prepare 10 aliquots of each constituent of Box 1 and Box 3, except for the RNase-free water. Use RNase-free reaction tubes and avoid freezing and thawing the tubes more than twice. Ensure the reaction buffer is carefully aliquotted so that the reaction vial is not overfilled.

6. Thaw Reaction Buffer without amino acids on ice and vortex thoroughly.

 ▲ Transfer 380 μl reaction buffer to a 2 ml Reaction Tube. ■ The 12 ml tube or the ▲ 2 ml Reaction Tube will serve as the reaction vessel for the initial protein synthesis reaction.

7. Thoroughly vortex the amino acid master mix prepared in step 3. Add ■ 500 μl or ▲ 100 μl amino acid master mix to the Reaction Buffer in the ■ 12 ml plastic tube or ▲ 2 ml Reaction tube. Store the remaining amino acid master mix on ice.

 There may be some precipitate in the amino acid master mix. This will not affect the performance of the kit.
8. Add ▲ 50 pmol or ▲ 10 pmol of plasmid DNA expression template to the reaction.
 This corresponds to a final concentration of 10 nM (▲ 100 μg / ▲ 20 μg of a 3 kb plasmid).

 PCR product produced using the RiNA Linear Template Kit Large Scale can also be used as a template (see page 25). A modified protocol is provided in the kit handbook.

9. Make up the reaction volume to ▲ 3.25 ml or ▲ 650 μl using RNase-free water.
 Use the pipetting scheme in Table 6 to calculate the required volume. It is important to follow the order of addition given in the table.

10. Add ▲ 1.75 ml or ▲ 350 μl E. coli Extract (NMR) to the reaction.
 Important: Do not use a glass pipet to transfer the E. coli extract as reaction components may adhere to the glass surface.

11. Gently mix the reaction by pipetting up and down.

12. Incubate the reaction in a ▲ water-bath or ▲ thermomixer at 37°C with gentle shaking for 1 h.

Table 6. Initial protein synthesis reaction components

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction Buffer without amino acids</td>
<td>1.9 ml / 380 μl</td>
</tr>
<tr>
<td>Amino acid master mix (prepared in step 3)</td>
<td>500 μl / 100 μl</td>
</tr>
<tr>
<td>Plasmid DNA*</td>
<td>Varies</td>
</tr>
<tr>
<td>RNase-free water</td>
<td>Varies</td>
</tr>
<tr>
<td>E. coli Extract (NMR)</td>
<td>1.75 ml / 350 μl</td>
</tr>
<tr>
<td>Total</td>
<td>5 ml / 1 ml</td>
</tr>
</tbody>
</table>

* PCR product produced using the RiNA Linear Template Kit Large Scale can also be used as a template (see page 25). A modified protocol is provided in the kit handbook.

Recycling the components of the initial synthesis reaction
Steps 13–18 can be performed at room temperature (15–25°C).

13. Immediately after starting a protein synthesis reaction, prepare and equilibrate a Gel Filtration Column. Unscrew and remove the bottom closure and top seal. Allow the storage buffer to drain out.
14. Equilibrate the column by applying \(3 \times 17 \text{ ml or } 3 \times 3 \text{ ml aliquots} \) of Equilibration Buffer and allowing the buffer to flow through the column.

The column can be placed in a QIArack during equilibration.

15. After 1 h incubation (step 12), centrifuge the tube containing the protein synthesis reaction at 10,000 x \(g \) for 3 min.

This centrifugation separates precipitates and insoluble target protein.

16. Carefully pipet the entire supernatant from step 15 onto the equilibrated Gel Filtration Column.

Important: Do not use a glass pipet to transfer the supernatant as reaction components may adhere to the glass surface.

17. After the supernatant has entered the column, pipet \(1 \text{ ml or } 100 \mu \text{l} \) Equilibration/Elution Buffer onto the column. Discard the flow-through fraction.

18. Place a \(50 \text{ ml Reaction Flask (supplied) or } 5 \text{ ml plastic tube (not supplied)} \) under the column and pipet \(7 \text{ ml or } 1.4 \text{ ml} \) Equilibration/Elution Buffer onto the column. Collect the flow-through fraction in the Reaction Flask.

This reaction flask will serve as the reaction vessel for the second protein synthesis reaction. The flow-through fraction contains the recycled high-molecular-weight reaction components.

Second in vitro synthesis reaction

19. Thoroughly vortex the amino acid master mix remaining from step 7. Add \(1 \text{ ml or } 200 \mu \text{l} \) of the amino acid master mix to the protein synthesis reaction (flow-through fraction from step 18).

There may be a precipitate visible in the tube containing amino acid master mix. This will not adversely affect the reaction.

20. Vortex the tube containing Feeding Solution (NMR) and add \(900 \mu \text{l or } 180 \mu \text{l} \) to the protein synthesis reaction.

21. Add \(1100 \mu \text{l or } 220 \mu \text{l} \) Energy Mix (red screw-cap) to the protein synthesis reaction.

22. Gently mix the reaction by pipetting up and down.

Table 7 summarizes the components of the second synthesis reaction. It is important to follow the order of addition shown in the table.

23. Incubate the reaction in a water-bath at 37°C with gentle shaking for 1 h.
Table 7. Second protein synthesis reaction components

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eluate from gel filtration column</td>
<td>7 ml / 1.4 ml</td>
</tr>
<tr>
<td>Amino acid master mix (prepared in step 3)</td>
<td>1 ml / 200 μl</td>
</tr>
<tr>
<td>Feeding Solution (NMR)</td>
<td>0.9 ml / 180 μl</td>
</tr>
<tr>
<td>Energy Mix</td>
<td>1.1 ml / 220 μl</td>
</tr>
<tr>
<td>Total</td>
<td>10 ml / 2 ml</td>
</tr>
</tbody>
</table>
Protocol: Large-Scale (5 ml) and Medium-Scale (1 ml) Protein Synthesis Using EasyXpress Single Amino Acid Substitution NMR Kits

This protocol is suitable for the in vitro production of recombinant, isotopically labeled proteins from plasmid DNA or PCR product using the EasyXpress NMR Protein Synthesis Kits – X (where X = Ala, Cys, Glu, Phe, Gly, His, Ile, Leu, Met, Pro, Trp, or Tyr). Proteins are labeled by the addition of isotopically labeled amino acids to the protein synthesis reaction. The supplied Amino Acid Mix (NMR) contains all required amino acids except that indicated by the kit’s name. Isotopically labeled versions of these amino acids must be supplied by the user.

For amino acid specific labeling of threonine, lysine, arginine, valine, or serine using the EasyXpress NMR Protein Synthesis Kit (cat. no. 32526) use the protocol on page 25.

Recent improvements in NMR technologies (e.g., cryoprobes) allow the use of lower amounts of labeled proteins (5), proteins can be expressed using 1 ml reactions instead of 5 ml reactions. It is advisable to first test and optimize the amount of expressed protein using the EasyXpress Protein Synthesis Kit.

Equipment and reagents to be supplied by the user

- For the 1 ml protocol: NAP-10 columns for the recycling step (e.g., GE Healthcare, cat. no. 17-0854-01) and 5 ml plastic tubes
- Plasmid expression DNA template encoding the protein of interest. The plasmid must contain a T7 or strong E. coli promoter and a ribosome binding site (see page 15)
- Alternatively, PCR product produced with the RiNA Linear Template Kit Large Scale, His-Tag or Strep-Tag (RiNA, cat. no. C1213-05, C1214-05) can be used as template for protein synthesis. This saves time by avoiding cloning procedures. Using these specialized PCR products will give similar protein yields (http://www.rina-gmbh.eu/)
- Isotopically labeled amino acid
- Shaking water bath or thermomixer
- **Optional**: QIArrack (cat. no. 19015)

Important points before starting

- The in vitro translation system is extremely sensitive to nuclease contamination. Always wear gloves and use RNase- and DNase-free reaction tubes and filter pipet tips.
E. coli extracts are provided as two individual aliquots in single tubes (2 x 5 ml reactions). Once thawed, use E. coli extract within 4 hours. If performing 1 ml reactions, all constituents of Box 1 and Box 3 must be vortexed thoroughly and aliquotted in RNase-free reaction tubes (except for the RNase-free water). Do not refreeze and thaw more than twice. Ensure the reaction buffer is carefully aliquoted so that the reaction vial is not overfilled.

All steps should be carried out on ice, except for the actual transcription–translation incubation and the recycling procedure with the gel filtration column.

The recommended incubation temperature for protein synthesis is 37°C; however, lower incubation temperatures may improve protein solubility in some cases.

For protein synthesis reactions, it is important to follow the order of addition for each component shown in the protocol and tables.

Do not use glass pipets at any stage of the procedure.

■ denotes values for the EasyXpress NMR Large-Scale protocol (5 ml);
▲ denotes values for the 1 ml protocol.

Procedure

Preparation of amino acid mix

1. Thaw Amino Acid Mix (without indicated amino acid). If using the ▲ 1 ml protocol, prepare ten aliquots). Freeze unused aliquots at –20°C or –80°C.

2. Dissolve isotopically labeled amino acid in RNase-free water to give a concentration of 48 mM.

 There may be some precipitates in the amino acid master mix. This will not affect the overall performance of the reaction.

3. Carefully vortex the isotopically labeled amino acid solution and pipet ■ 425 μl into each vial of Amino Acid Mix thawed in step 1 or ▲ 85 μl to 255 μl of Amino Acid Mix thawed in step 1.

 Table 8 shows a pipetting scheme for a typical master mix prepared with isotopically labeled tyrosine.
Table 8. Amino acid master mix for 13C tyrosine-labeled protein synthesis reaction

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino Acid Mix (without tyrosine)</td>
<td>1.275 ml / 255 µl</td>
</tr>
<tr>
<td>13C-labeled tyrosine (48 mM)</td>
<td>425 µl / 85 µl</td>
</tr>
<tr>
<td>Total</td>
<td>1.7 ml / 340 µl</td>
</tr>
</tbody>
</table>

Initial in vitro synthesis reaction

4. Thaw and store *E. coli* Extract (NMR), Feeding Solution (NMR), and Energy Mix on ice. Thaw RNase-free water and Equilibration/Elution Buffer at room temperature (15–25°C).

5. If using the medium-scale protocol, prepare 10 aliquots of each constituent of Box 1 and Box 3, except for the RNase-free water. Use RNase-free reaction tubes and avoid freezing and thawing the tubes more than twice. Ensure the reaction buffer is carefully aliquoted so that the reaction vial is not overfilled.

6. Thaw Reaction Buffer without amino acids on ice and vortex thoroughly.

 ▲ Transfer 380 µl of reaction buffer to a 2 ml Reaction Tube. The ■ 12 ml tube or the ▲ 2 ml Reaction Tube will serve as the reaction vessel for the initial protein synthesis reaction.

7. Thoroughly vortex the amino acid master mix prepared in step 3. Add ■ 500 µl or ▲ 100 µl amino acid master mix to the Reaction Buffer in the ■ 12 ml plastic tube or ▲ 2 ml Reaction Tube. Store the remaining amino acid master mix on ice.

 There may be some precipitate in the amino acid master mix. This will not affect the performance of the kit.

8. Add ■ 50 pmol or ▲ 10 pmol of plasmid DNA expression template to the reaction.

 This corresponds to a final concentration of 10 nM (■ 100 µg / ▲ 20 µg of a 3 kb plasmid).

 PCR product produced using the RiNA Linear Template Kit Large Scale can also be used as a template (see page 31). A modified protocol is provided in the kit handbook.
9. **Make up the reaction volume to 3.25 ml or 650 μl with RNase-free water.**
 Use the pipetting scheme in Table 9 to calculate the required volume. It is important to follow the order of addition given in the table.

10. **Add 1.75 ml or 350 μl E. coli Extract (NMR) to the reaction.**
 Important: Do not use a glass pipet to transfer the E. coli extract as reaction components may adhere to the glass surface.

11. **Gently mix the reaction by pipetting up and down.**

12. **Incubate the reaction in a water-bath or Thermomixer at 37°C with gentle shaking for 1 h.**

Table 9. Initial protein synthesis reaction components

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction Buffer without amino acids</td>
<td>1.9 ml / 380 μl</td>
</tr>
<tr>
<td>Amino acid master mix (prepared in step 3)</td>
<td>500 μl / 100 μl</td>
</tr>
<tr>
<td>Plasmid DNA*</td>
<td>Varies</td>
</tr>
<tr>
<td>RNase-free water</td>
<td>Varies</td>
</tr>
<tr>
<td>E. coli Extract (NMR)</td>
<td>1.75 ml / 350 μl</td>
</tr>
<tr>
<td>Total</td>
<td>5 ml / 1 ml</td>
</tr>
</tbody>
</table>

* PCR product produced using the RlNA Linear Template Kit Large Scale can also be used as a template (see page 31). A modified protocol is provided in the kit handbook.

Recycling the components of the initial synthesis reaction

Steps 13–18 can be performed at room temperature (15–25°C).

13. **Immediately after starting protein synthesis reaction, prepare and equilibrate a Gel Filtration Column.** Unscrew and remove the bottom closure and top seal. Allow the storage buffer to drain out.

14. **Equilibrate the column by applying 3 x 17 ml or 3 x 3 ml aliquots of Equilibration Buffer and allowing the buffer to flow through the column.**
 The column can be placed in a QIArack during equilibration.

15. **After 1 h incubation (step 12), centrifuge the tube containing the protein synthesis reaction at 10,000 x g for 3 min.**
 This centrifugation separates precipitates and insoluble target protein.
16. Carefully pipet the entire supernatant from step 15 onto the equilibrated Gel Filtration Column.

Important: Do not use a glass pipet to transfer the supernatant as reaction components may adhere to the glass surface.

17. After the supernatant has entered the column, pipet ▶ 1 ml or ▲ 100 μl Equilibration/Elution Buffer onto the column. Discard the flow-through fraction.

18. Place a ▶ 50 ml Reaction Flask (supplied) or ▲ a 5 ml plastic tube (not supplied) under the column and pipet ▶ 7 ml or ▲ 1.4 ml Equilibration/Elution Buffer onto the column. Collect the flow-through fraction in the Reaction Flask.

This reaction flask will serve as the reaction vessel for the second protein synthesis reaction. The flow-through fraction contains the recycled high-molecular-weight reaction components.

Second in vitro synthesis reaction

19. Thoroughly vortex the amino acid master mix remaining from step 7. Add ▶ 1 ml or ▲•200 μl amino acid master mix to the protein synthesis reaction (flow-through fraction from step 18).

There may be a precipitate visible in the tube containing amino acid master mix. This will not adversely affect the reaction.

20. Vortex the tube containing Feeding Solution (NMR) and add ▶ 900 μl or ▲ 180 μl to the protein synthesis reaction.

21. Add ▶ 1100 μl or ▲ 220 μl Energy Mix (red screw-cap) to the protein synthesis reaction.

22. Gently mix the reaction by pipetting up and down.

Table 10 summarizes the components of the second synthesis reaction. It is important to follow the order of addition given in the table.

23. Incubate the reaction in a water-bath at 37°C with gentle shaking for 1 h.
Table 10. Second protein synthesis reaction components

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eluate from gel filtration column</td>
<td>7 ml / 1.4 ml</td>
</tr>
<tr>
<td>Amino acid master mix (prepared in step 3)</td>
<td>1 ml / 200 μl</td>
</tr>
<tr>
<td>Feeding Solution (NMR)</td>
<td>0.9 ml / 180 μl</td>
</tr>
<tr>
<td>Energy Mix</td>
<td>1.1 ml / 220 μl</td>
</tr>
<tr>
<td>Total</td>
<td>10 ml / 2 ml</td>
</tr>
</tbody>
</table>
Protocol: Large-Scale (5 ml) and Medium-Scale (1 ml) Protein Synthesis Using the EasyXpress NMR (U-15N), (U-15N, U-13C), and (U-15N, U-13C, U-D) Kit

This protocol is suitable for the in vitro production of recombinant, uniformly isotopically labeled proteins from plasmid DNA or PCR product using the EasyXpress NMR Protein Synthesis Kit in a two-stage procedure. Proteins are labeled by the addition of uniformly isotopically labeled amino acids to the protein synthesis reaction. The supplied Amino Acid Mix (NMR) contains all required labeled amino acids U-15N, U-15N, and U-13C or U-15N, U-13C, and U-D.

Equipment and reagents to be supplied by the user

- For the 1 ml protocol: NAP-10 columns for recycling step (e.g., GE Healthcare, cat. no. 17-0854-01) and 5 ml plastic tubes
- Plasmid expression DNA template encoding the protein of interest. The plasmid must contain a T7 or strong E. coli promoter and a ribosome binding site (see page 15)
- Alternatively, PCR product produced with the RiNA Linear Template Kit Large Scale, His-Tag or Strep-Tag (RiNA, cat. no. C1213-05, C1214-05) can be used as template for protein synthesis. This saves time by avoiding cloning procedures. Using these specialized PCR products will give similar protein yields (http://www.rina-gmbh.eu/)
- Shaking water bath or thermomixer
- **Optional:** QIArack (cat. no. 19015)

Important points before starting

- The in vitro translation system is extremely sensitive to nuclease contamination. Always wear gloves and use RNase- and DNase-free reaction tubes and filter pipet tips.
- E. coli extracts are provided as two individual aliquots in single tubes (2 x 5 ml reactions). Once thawed, use E. coli extract within 4 hours. If performing 1 ml reactions, all constituents of Box 1 and Box 3 must be vortexed thoroughly and aliquotted in RNase-free reaction tubes (except for the RNase-free water). Do not refreeze and thaw more than twice. Ensure the reaction buffer is carefully aliquotted so that the reaction vial is not overfilled.
- All steps should be carried out on ice, except for the actual transcription–translation incubation and the recycling procedure with the gel filtration column.
The recommended incubation temperature for protein synthesis is 37°C; however, lower incubation temperatures may improve protein solubility in some cases.

For protein synthesis reactions, it is important to follow the order of addition for each component shown in the protocol and tables.

Do not use glass pipets at any stage of the procedure.

■ denotes values for the EasyXpress NMR Large-Scale protocol (5 ml); ▲ denotes values for the 1 ml protocol.

Procedure

Preparation of amino acid mix

1. Dissolve the uniformly labeled Amino Acid Mix ([U-15N], [U-15N, U-13C] or [U-15N, U-13C, U-D]) in 3050 μl H2O. If performing the ▲ 1 ml protocol, prepare 10 aliquots. Freeze unused aliquots at –20°C.

Initial in vitro synthesis reaction

2. Thaw and store E. coli Extract (NMR), Feeding Solution (NMR), and Energy Mix on ice. Thaw RNase-free water and Equilibration/Elution Buffer at room temperature (15–25°C).

3. If performing the medium-scale protocol, prepare 10 aliquots of each constituent of Box 1 and Box 3, except for the RNase-free water. Use RNase-free reaction tubes and avoid freezing and thawing the tubes more than twice. Ensure the reaction buffer is carefully aliquotted so that the reaction vial is not overfilled.

4. Thaw Reaction Buffer without amino acids on ice and vortex thoroughly.
 ▲ Transfer 380 μl of reaction buffer to a 2 ml Reaction Tube. The ■ 12 ml tube or the ▲ 2 ml Reaction Tube will serve as the reaction vessel for the initial protein synthesis reaction.

5. Thoroughly vortex the amino acid mix prepared in step 1. Add ■ 500 μl or ▲ 100 μl amino acid mix to the Reaction Buffer in the ■ 12 ml plastic tube or ▲ 2 ml Reaction Tube. Store the remaining amino acid mix on ice.

There may be some precipitate in the amino acid mix. This will not affect the performance of the kit.
6. Add 50 pmol or ▲ 10 pmol of plasmid DNA expression template to the reaction.
 This corresponds to a final concentration of 10 nM (■ 100 μg / ▲ 20 μg of a 3 kb plasmid).
 PCR product produced using the RiNA Linear Template Kit Large Scale can also be used as a template (see page 37). A modified protocol is provided in the kit handbook.

7. Make up the reaction volume to ▲ 3.25 ml or ■ 650 μl with RNase-free water.
 Use the pipetting scheme in Table 11 to calculate the required volume. It is important to follow the order of addition given in the table.

8. Add ▲ 1.75 ml or ■ 350 μl E. coli Extract (NMR) to the reaction.
 Important: Do not use a glass pipet to transfer the E. coli extract as reaction components may adhere to the glass surface.

9. Gently mix the reaction by pipetting up and down.
10. Incubate the reaction in ▲ a water-bath or ■ thermomixer at 37°C with gentle shaking for 1 h.

Table 11. Initial protein synthesis reaction components

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction Buffer without amino acids</td>
<td>1.9 ml / 380 μl</td>
</tr>
<tr>
<td>Amino acid mix (prepared in step 3)</td>
<td>500 μl / 100 μl</td>
</tr>
<tr>
<td>Plasmid DNA*</td>
<td>Varies</td>
</tr>
<tr>
<td>RNase-free water</td>
<td>Varies</td>
</tr>
<tr>
<td>E. coli Extract (NMR)</td>
<td>1.75 ml / 350 μl</td>
</tr>
<tr>
<td>Total</td>
<td>5 ml / 1 ml</td>
</tr>
</tbody>
</table>

* PCR product produced using the RiNA Linear Template Kit Large Scale can also be used as a template (see page 37). A modified protocol is provided in the kit handbook.

Recycling the components of the initial synthesis reaction
Steps 11–16 can be performed at room temperature (15–25°C).

11. Immediately after starting protein synthesis, prepare and equilibrate a Gel Filtration Column. Unscrew and remove the bottom closure and top seal. Allow the storage buffer to drain out.
12. Equilibrate the column by applying ▲ 3 x 17 ml or ▲ 3 x 3 ml aliquots of Equilibration Buffer and allowing the buffer to flow through the column.
 The column can be placed in a QIArack during equilibration.

13. After 1 h incubation (step 10), centrifuge the tube containing the protein synthesis reaction at 10,000 x g for 3 min.
 This centrifugation separates precipitates and insoluble target protein.

14. Carefully pipet the entire supernatant from step 13 onto the equilibrated Gel Filtration Column.
 Important: Do not use a glass pipet to transfer the supernatant as reaction components may adhere to the glass surface.

15. After the supernatant has entered the column, pipet ▲ 1 ml or ▲ 100 µl Equilibration/Elution Buffer onto the column. Discard the flow-through fraction.

16. Place a ▲ 50 ml Reaction Flask (supplied) or a ▲ 5 ml plastic tube (not supplied) under the column and pipet ▲ 7 ml or ▲ 1.4 ml Equilibration/Elution Buffer onto the column. Collect the flow-through fraction in the Reaction Flask.
 This reaction flask will serve as the reaction vessel for the second protein synthesis reaction. The flow-through fraction contains the recycled high-molecular–weight reaction components.

Second in vitro synthesis reaction

17. Thoroughly vortex the amino acid mix remaining from step 5. Add ▲ 1 ml or ▲ 200 µl of the amino acid mix to the protein synthesis reaction (flow-through fraction from step 16).
 There may be a precipitate visible in the tube containing amino acid master mix. This will not adversely affect the reaction.

18. Vortex the tube containing Feeding Solution (NMR) and add ▲ 900 µl or ▲ 180 µl to the protein synthesis reaction.

19. Add ▲ 1100 µl or ▲ 220 µl Energy Mix (red screw-cap) to the protein synthesis reaction.

20. Gently mix the reaction by pipetting up and down.
 Table 12 summarizes the components of the second synthesis reaction. It is important to follow the order of addition given in the table.

21. Incubate the reaction in a water-bath at 37°C with gentle shaking for 1 h.
Table 12. Second protein synthesis reaction components

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eluate from gel filtration column</td>
<td>7 ml / 1.4 ml</td>
</tr>
<tr>
<td>Amino acid master mix (prepared in step 3)</td>
<td>1 ml / 200 μl</td>
</tr>
<tr>
<td>Feeding Solution (NMR)</td>
<td>0.9 ml / 180 μl</td>
</tr>
<tr>
<td>Energy Mix</td>
<td>1.1 ml / 220 μl</td>
</tr>
<tr>
<td>Total</td>
<td>10 ml / 2 ml</td>
</tr>
</tbody>
</table>

Note: The volume for the amino acid master mix is marked as 1 ml / 200 μl, suggesting a possible typographical error or a specific concentration. Typically, volumes are not specified in such a manner.
Purifying Affinity-tagged Proteins

Recombinant proteins carrying a 6xHis- or Strep-tag can be efficiently purified in a one-step affinity purification procedure using Ni-NTA or Strep-Tactin Superflow, respectively. Recombinant proteins carrying both tags (His-Strep-tagged proteins) can be purified in a two-step procedure using first Ni-NTA and subsequently Strep-Tactin Superflow. Purification can be carried out either at 2–8°C or at room temperature (15–25°C).

Purifying 6xHis-tagged Proteins Using Ni-NTA Superflow

This protocol can be used for purifying up to 15 mg 6xHis- or His-Strep-tagged protein generated in an EasyXpress in vitro protein synthesis reaction.

Equipment and reagents to be supplied by the user

- EasyXpress in vitro protein synthesis reaction containing 6xHis-tagged target protein
- Ni-NTA Superflow Column (QIAGEN cat. no. 30622)
- Binding, wash, and elution buffers
- Microcentrifuge tubes for elution fractions
- Optional: QIArack (QIAGEN cat. no. 19015)
- Buffer compositions can be found in Appendix D

Important point before starting

NMR measurements require low salt and low pH conditions. In contrast to standard protocols, an elution buffer comprising 250 mM instead of 300 mM NaCl and pH 6.5 instead of 8.0 have been successfully used. If NMR measurements require further decreases in NaCl and imidazole concentration and/or pH, protein stability and quantity of elution should be evaluated for a specific protein.

Procedure

1. Centrifuge the protein synthesis reaction at 10,000 x g for 3 min at 15–25°C to precipitate insoluble material.
2. Break the seal at the outlet of a Ni-NTA Superflow column and remove the screw cap.

 Ni-NTA Superflow Columns should be stored vertically. Before opening, ensure that the Ni-NTA Superflow resin is contained in the lower narrow part of the column. If this is not the case, resuspend the resin by gently
shaking the column, and keeping it in an upright position until the resin has settled.

3. **Place the opened column in a rack and allow the storage buffer to drain out.**
 The column will not run dry.

4. **Equilibrate the column by pipetting 10 ml Buffer NPI-10 onto it and allowing the buffer to drain out.**

5. **Pipet the supernatant from step 1 into a clean 25 ml tube and add 10 ml Buffer NPI-10. Pipet the diluted reaction onto the equilibrated Ni-NTA Superflow Column and allow the buffer to drain out.**
 Collect and retain the flow-through fraction for subsequent SDS-PAGE analysis.

6. **Wash the column by pipetting 10 ml Buffer NPI-20 onto it and allowing the buffer to drain out.**
 Collect and retain the wash fraction for subsequent SDS-PAGE analysis.

7. **Place a clean microcentrifuge tube under the column outlet and pipet 1 ml Buffer NPI-250 onto the column. Collect and label the fraction.**

8. **Repeat step 7 five times to give six elution fractions.**

9. **Analyze the flow-through, wash, and elution fractions by SDS-PAGE.**

Purifying Strep-tagged Proteins Using Strep-Tactin Superflow

This protocol can be used for purifying up to 5 mg Strep- or His-Strep-tagged protein generated in an EasyXpress in vitro protein synthesis reaction.

Equipment and reagents to be supplied by the user

- EasyXpress in vitro protein synthesis reaction or Ni-NTA Superflow elution fractions containing Strep-tagged target protein
- Strep-Tactin Superflow (QIAGEN cat. no. 30003)
- Polypropylene Columns (5 ml) (QIAGEN cat. no. 34964)
- Wash and elution buffers
- Microcentrifuge tubes for elution fractions
- **Optional**: QIArack (QIAGEN cat. no. 19015)
- Buffer compositions can be found in Appendix D
Important point before starting

NMR measurements require low salt and low pH conditions. In contrast to standard protocols, an elution buffer comprising 250 mM instead of 300 mM NaCl and pH 6.5 instead of 8.0 have been successfully used. If NMR measurements require further decreases in NaCl and imidazole concentration and/or pH, protein stability and quantity of elution should be evaluated for a specific protein.

Procedure

1. Centrifuge the protein synthesis reaction at 10,000 x g for 3 min at 4°C to precipitate insoluble material. If using Ni-NTA Superflow elution fractions, pool the fractions.
2. Resuspend 5 ml Strep-Tactin Superflow and pour into a 5ml polypropylene column.
3. Place the opened column in a rack and allow the storage buffer to drain out.
 The column will not run dry.
4. Equilibrate the column by pipetting 2 x 5 ml Buffer NP onto it and allowing the buffer to drain out.
5. Pipet the supernatant or pooled elution fractions from step 1 onto the equilibrated Strep-Tactin Superflow Column and allow the buffer to drain out.
 Collect and retain the flow-through fraction for subsequent SDS-PAGE analysis.
6. Wash the column by pipetting 2 x 5 ml Buffer NP onto it and allowing the buffer to drain out. Repeat the wash with a further 2 x 5 ml Buffer NP.
 Collect and retain the wash fractions for subsequent SDS-PAGE analysis.
7. Place a clean microcentrifuge tube under the column outlet and pipet 1.25 ml Buffer NPB onto the column. Collect and label the fraction.
8. Repeat step 7 five times to give six elution fractions.
9. Analyze the flow-through, wash, and elution fractions by SDS-PAGE.
Troubleshooting Guide

This troubleshooting guide may be helpful in solving any problems that may arise. For more information, see also the Frequently Asked Questions page at our Technical Support Center: www.qiagen.com/FAQ/FAQList.aspx. The scientists in QIAGEN Technical Services are always happy to answer any questions you may have about either the information and protocols in this handbook or sample and assay technologies (for contact information, see back cover or visit www.qiagen.com).

Comments and suggestions

<table>
<thead>
<tr>
<th>No target protein</th>
</tr>
</thead>
</table>
| **a)** Poor quality or wrong quantity of DNA template | Check the concentration, integrity, and purity of the DNA template.
Before large-scale reactions are performed, we recommended checking DNA quality and functionality and developing optimized reaction conditions using small-scale reactions using the EasyXpress Protein Synthesis Kits.
The physical make-up of the construct can be optimized using linear expression templates generated using the QIAGEN EasyXpress Linear Template Kit.
Prepare high-purity plasmid DNA with QIAGEN plasmid kits. |
| **b)** DNA template not optimally configured, or error in cloning | Check the sequence. Make sure that the start codon is in the right position for expression. Ensure that the expression plasmid contains a T7 promoter or a strong E. coli promoter and a ribosome binding site. See page 15 for recommendations for suitable expression constructs. |
| **c)** In vitro transcription or in vitro translation is disrupted by expressed protein | In small-scale reactions using the EasyXpress Protein Synthesis Kits, express the control protein EF-Ts alone and in the presence of the target protein. If expression of EF-Ts is inhibited by the presence of the target protein, it may not be possible to efficiently express the target protein using the EasyXpress Protein Synthesis System. |
| **d)** Amino acid master mix prepared incorrectly | Ensure that the amino acid master mix contains all 20 amino acids (labeled or unlabeled). |
Comments and suggestions

<table>
<thead>
<tr>
<th></th>
<th>Rigid secondary structures in the mRNA inhibit initiation of translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>e)</td>
<td>Perform small-scale control expression reactions using the EasyXpress Mini or Maxi Kit. Include an affinity-tag coding sequence at the 5' end of the protein coding sequence. If the protein to be expressed already contains a tag, move the tag to the opposite terminus.</td>
</tr>
</tbody>
</table>

Low expression yield

<table>
<thead>
<tr>
<th>a)</th>
<th>Poor quality or wrong quantity of DNA template</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Check the concentration, integrity, and purity of the DNA template.</td>
</tr>
<tr>
<td></td>
<td>Before large-scale reactions are performed, we recommended checking DNA quality and functionality and developing optimized reaction conditions using small-scale reactions using the EasyXpress Mini or Maxi Kit.</td>
</tr>
<tr>
<td></td>
<td>The physical make-up of the construct can be optimized using linear expression templates generated using the QIAGEN EasyXpress Linear Template Kit.</td>
</tr>
<tr>
<td></td>
<td>Prepare high-purity plasmid DNA with QIAGEN plasmid kits.</td>
</tr>
<tr>
<td></td>
<td>In small-scale reactions, determine the optimal amount of DNA template used in the in vitro translation by titration.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b)</th>
<th>Template not optimally configured</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Evaluate the level of expression of soluble protein using the EasyXpress Protein Synthesis Kits.</td>
</tr>
<tr>
<td></td>
<td>Adding an affinity tag to the construct may increase yields and/or solubility (10). Conduct trials to find an optimal expression construct using the EasyXpress Protein Synthesis Kits and EasyXpress Linear Template Kit.</td>
</tr>
<tr>
<td></td>
<td>See page 15 for recommendations for suitable expression constructs.</td>
</tr>
</tbody>
</table>

Sufficient protein expression, but low yield of active protein

<table>
<thead>
<tr>
<th>a)</th>
<th>Incorrect folding of the protein due to dependence on posttranslational modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E. coli lysate cannot introduce posttranslational modifications such as glycosylation, phosphorylation, or signal-peptide cleavage.</td>
</tr>
</tbody>
</table>
Comments and suggestions

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b) Cofactors required for activity</td>
<td>Add cofactors to synthesis reaction and/or activity assay.</td>
<td></td>
</tr>
</tbody>
</table>

Expressed protein is insoluble

- Protein forms aggregates
- An incubation temperature of 37°C is recommended for protein synthesis. However, lower incubation temperatures may improve protein solubility.

Inconsistent data derived from NMR spectra (uniformly labeled proteins)

- Partial back protonation of deuterated amino acids
- See Appendix C for recommendations.

Inconsistent data derived from NMR Spectra (amino acid-specific labeling)

- Isotope scrambling (Glu labeling)
- See Appendix B for more information on inhibition of isotope scrambling.
Appendix A: Optimization of EasyXpress Reactions

Although the EasyXpress system has been developed to give the highest yields of active and soluble protein, it may be possible to further optimize the synthesis procedure for individual proteins, i.e., the total expression or the solubility may be increased by including additives in the synthesis reaction.

As the response to additives is protein-dependent, no general recommendation can be provided. Conditions that give improved results in small-scale (e.g., 50 µl) reactions should be transferred linearly to the large-scale reaction (i.e., final additive concentrations showing a positive effect in small-scale reactions should be maintained in the large-scale reaction). Tables 13 and 14 give some examples of reagents and reaction conditions that may lead to improved results with regard to protein solubility and/or yield.

It may be possible to combine optimized parameters (e.g., incubation at 32°C with 2% glycerol) to further optimize expression, but such enhancements may not always be additive and their effects must be determined empirically.

It is important that the total volume of the large-scale reactions does not exceed 5.35 ml (first round of synthesis) and 10.7 ml (second round of synthesis) after addition of additives.
Table 13. Reaction conditions that may improve results

<table>
<thead>
<tr>
<th>Reaction condition</th>
<th>Range of conditions evaluated</th>
<th>Recommended starting point for optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>15–37°C</td>
<td>30°C</td>
</tr>
<tr>
<td>Incubation time</td>
<td>1–3 h</td>
<td>Usually not required</td>
</tr>
<tr>
<td>Reaction dilution</td>
<td>1.1x–1.6x</td>
<td>1.4x</td>
</tr>
<tr>
<td>Template concentration</td>
<td>0.2–2 μg DNA per 50 μl reaction</td>
<td>1 μg per 50 μl reaction</td>
</tr>
<tr>
<td>Presence of IPTG (for IPTG inducible plasmids)</td>
<td>–</td>
<td>1 mM final concentration</td>
</tr>
<tr>
<td>Hydroxy-ectoine</td>
<td>0.1–1 M</td>
<td>0.5 M</td>
</tr>
<tr>
<td>D-Sorbitol</td>
<td>0.1–1 M</td>
<td>0.5 M</td>
</tr>
<tr>
<td>Glycine Betaine</td>
<td>0.1–1 M</td>
<td>0.5 M</td>
</tr>
<tr>
<td>L-Carnitine</td>
<td>0.1–1 M</td>
<td>0.5 M</td>
</tr>
<tr>
<td>Detergents*</td>
<td>0.05–1% (v/v)</td>
<td>0.5% (v/v)</td>
</tr>
<tr>
<td>Glycerol</td>
<td>Up to 3% (v/v)</td>
<td>1.5% (v/v)</td>
</tr>
<tr>
<td>Presence of cofactors (metal ions)</td>
<td>See Table 14</td>
<td>–</td>
</tr>
<tr>
<td>Redox buffer (20x) = Oxidized + Reduced glutathione = 120 mM GssG + 12 mM GSH</td>
<td>0.5x–1.5x</td>
<td>1x</td>
</tr>
<tr>
<td>pH adjustment†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidic buffer (0.5 M MES, pH 5.5, adjusted with KOH)</td>
<td>Up to 11 μl per 50 μl reaction (pH 6.5–7.4)</td>
<td>–</td>
</tr>
<tr>
<td>Basic buffer (0.25 M KOH)</td>
<td>Up to 6 μl per 50 μl reaction (pH 7.4–8.0)</td>
<td>–</td>
</tr>
</tbody>
</table>

* Some detergents may reduce efficiency of protein expression.
† Add MES or KOH to EasyXpress Reaction Buffer and reduce volume of water accordingly.
Table 14. Reaction cofactors

<table>
<thead>
<tr>
<th>Cofactor (salt)</th>
<th>Compatible concentration*</th>
<th>Cofactor (salt)</th>
<th>Compatible concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca$^{2+}$ (CaCl$_2$)</td>
<td>20 µM</td>
<td>Mo$^{6+}$ (Na$_2$MoO$_4$)</td>
<td>375 µM</td>
</tr>
<tr>
<td>Co$^{2+}$ (CoSO$_4$)</td>
<td>375 µM</td>
<td>Se$^{4+}$ (Na$_2$SeO$_3$)</td>
<td>1 µM</td>
</tr>
<tr>
<td>Cu$^{2+}$ (CuCl$_2$)</td>
<td>90 µM</td>
<td>W$^{6+}$ (Na$_2$WO$_4$)</td>
<td>1 µM</td>
</tr>
<tr>
<td>Fe$^{2+}$ (FeSO$_4$)</td>
<td>375 µM</td>
<td>Ni$^{2+}$ (NiSO$_4$)</td>
<td>5 µM</td>
</tr>
<tr>
<td>Mn$^{2+}$ (MnCl$_2$)</td>
<td>45 µM</td>
<td>Zn$^{2+}$ (ZnCl$_2$)</td>
<td>500 µM</td>
</tr>
</tbody>
</table>

* The highest concentration tested that had no significant effect on protein synthesis in trials expressing the control protein EF-Ts (His). It is possible that higher concentrations may be added without compromising protein synthesis.
Appendix B: Inhibition of Isotope Scrambling

Using the EasyXpress NMR Protein Synthesis Kit, incorporation of stable-isotope labeled amino acids is both highly efficient and selective. Due to its production procedure, the EasyXpress E. coli Extract is far more inert with regard to isotope scrambling than in vivo systems; however, a slight residual metabolizing activity may be observed in the case of Glu-specific labeling. Of note, interconversion between Glu and Asp, as well as between Glu and Gln, may occur to some extent. This can be suppressed by inhibitors of transaminases and glutamine synthase (11).

Table 15 provides an example of transaminase inhibitors and their recommended working concentrations, which helps to prevent isotope scrambling occurring during Glu-specific labeling (Figure 5). It is recommended that protein expression is evaluated in the presence of varying inhibitor concentrations in a small-scale experiment prior to large-scale synthesis.

Table 15. Recommended concentrations of transaminase inhibitors

<table>
<thead>
<tr>
<th>Selectively labeled amino acid</th>
<th>Recommended inhibitor</th>
<th>Recommended final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu</td>
<td>Aminooxyacetate</td>
<td>1. Reaction: 1–2 mM*</td>
</tr>
<tr>
<td></td>
<td>(Sigma, cat. no. C13408)</td>
<td>2. Reaction: 0.1–1 mM</td>
</tr>
<tr>
<td>Glu</td>
<td>L-Methionine sulfoximine†</td>
<td>0.1–0.2 mM in both reactions 1 and 2</td>
</tr>
<tr>
<td></td>
<td>(Sigma, cat. no. M5379)</td>
<td></td>
</tr>
</tbody>
</table>

* Highest concentration tested with no significant effect on protein synthesis in trials expressing control proteins.
† Inhibitor may reduce efficiency of protein expression.
Figure 5. Inhibition of isotopic scrambling. 1H-15N HSQC spectra of 15N-Glu selectively labeled IL-1β synthesized using the EasyXpress NMR Protein Synthesis Kit A without scrambling inhibitors B in the presence of 2 mM Aminooxyacetate and 0.2 mM L-Methionine sulfoximine. Only signals corresponding to the 11 Glu residues contained in mature IL-1β are visible in the spectrum when inhibitors are present during protein expression. NMR spectra were acquired at 600 MHz using a 1.7 mm H-C/N Micro Cryoprobe from Bruker Biospin.
Appendix C: Partial Back Protonation of Deuterated Amino Acids

Using the EasyXpress NMR Protein Synthesis Kit with triple-labeled stable-isotope amino acids results in an efficient incorporation level of 90–95% deuterated amino acids, whereas in vivo expression of deuterated proteins can only be achieved after lengthy adaptation of cells to D₂O-based growth media. In contrast, cell-free expression of predeuterated proteins with specifically labeled amino acids results in rapid synthesis and consistent or enhanced yields compared to the unlabeled protein.

Back protonation is characterized as exchange of the H⁻ and H⁰ of deuterated amino acids with bulk water and is amino-acid dependent. Asp, Asn, Gln, and Glu show a relatively high degree of partial back protonation. Whereas Thr, His, and Met show only a very low level (12).

To lower partial back protonation reactions (especially amide protons), the triple-labeled amino acid mix can be dissolved in D₂O instead of water. This result in a contingent of 10% deuterium in the reaction volume and decreases back protonation by a factor of approximately two (see Preparation of the amino acid mix, in the protocol on page 38).

For measurements that require a further decrease of cross peaks, it is possible to prepare the Equilibration Buffer in deuterium instead of water. This results in a contingent of 73% deuterium in the reaction volume and further decreases back protonation (see Recycling the components of the initial synthesis reaction, in the protocol on page 39).

Equilibration Buffer (for recycling step)
- 50 mM HEPES, pH 7.6
- 100 mM KOAc
- 50 mM NH₄OAc
- 10 mM MgCl₂
- 0.1 mM EDTA
- 0.002 % NaN₃
- 1 mM DTT
- 10 μM GDP
Appendix D: Buffer Compositions

NPI-10 (Ni-NTA Superflow binding buffer, 1 Liter):

- $50 \text{ mM } \text{NaH}_2\text{PO}_4$
 - 6.90 g NaH$_2$PO$_4$·H$_2$O (MW 137.99 g/mol)
- $300 \text{ mM } \text{NaCl}$
 - 17.54 g NaCl (MW 58.44 g/mol)
- $10 \text{ mM } \text{imidazole}$
 - 0.68 g imidazole (MW 68.08 g/mol)

Adjust pH to 8.0 using NaOH.

NPI-20 (Ni-NTA Superflow wash buffer, 1 Liter):

- $50 \text{ mM } \text{NaH}_2\text{PO}_4$
 - 6.90 g NaH$_2$PO$_4$·H$_2$O (MW 137.99 g/mol)
- $300 \text{ mM } \text{NaCl}$
 - 17.54 g NaCl (MW 58.44 g/mol)
- $20 \text{ mM } \text{imidazole}$
 - 1.36 g imidazole (MW 68.08 g/mol)

Adjust pH to 8.0 using NaOH.

NPI-250 (Ni-NTA Superflow elution buffer, 1 Liter):

- $50 \text{ mM } \text{NaH}_2\text{PO}_4$
 - 6.90 g NaH$_2$PO$_4$·H$_2$O (MW 137.99 g/mol)
- $300 \text{ mM } \text{NaCl}$
 - 17.54 g NaCl (MW 58.44 g/mol)
- $250 \text{ mM } \text{imidazole}$
 - 17.0 g imidazole (MW 68.08 g/mol)

Adjust pH to 8.0 using NaOH. (For subsequent NMR measurements, QIAGEN recommends 250 mM NaCl (14.61 g), adjust pH to 6.5.)

NP (Strep-Tactin Superflow binding and wash buffer, 1 Liter):

- $50 \text{ mM } \text{NaH}_2\text{PO}_4$
 - 6.90 g NaH$_2$PO$_4$·H$_2$O (MW 137.99 g/mol)
- $300 \text{ mM } \text{NaCl}$
 - 17.54 g NaCl (MW 58.44 g/mol)

Adjust pH to 8.0 using NaOH.

NPB (Strep-Tactin Superflow elution buffer, 1 Liter):

- $50 \text{ mM } \text{NaH}_2\text{PO}_4$
 - 6.90 g NaH$_2$PO$_4$·H$_2$O (MW 137.99 g/mol)
- $300 \text{ mM } \text{NaCl}$
 - 17.54 g NaCl (MW 58.44 g/mol)
- $2.5 \text{ mM } \text{Desthiobiotin}$
 - 0.54 g Desthiobiotin (Sigma cat. no. D 1411)

Adjust pH to 8.0 using NaOH. (For subsequent NMR measurements, QIAGEN recommends 250 mM NaCl (14.61 g), adjust pH to 6.5.)
References

QIAGEN maintains a large, up-to-date online database of scientific publications utilizing QIAGEN products. Comprehensive search options allow you to find the articles you need, either by a simple keyword search or by specifying the application, research area, title, etc.

For a complete list of references, visit the QIAGEN Reference Database online at www.qiagen.com/RefDB/search.asp or contact QIAGEN Technical Services or your local distributor.

9) Ni-NTA — Setting the affinity purification standard, QIAGEN News 2005. 35.

Ordering Information

<table>
<thead>
<tr>
<th>Product</th>
<th>Contents</th>
<th>Cat. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EasyXpress Protein Synthesis Mega Kit</td>
<td>For 2 x 5 ml reactions: E. coli extract, reaction buffers, amino acid mix w/o methionine, methionine, RNase-free water, gel-filtration columns, and reaction flasks</td>
<td>32516</td>
</tr>
<tr>
<td>EasyXpress NMR Protein Synthesis Kit</td>
<td>For 2 x 5 ml or 10 x 1 ml reactions: E. coli extract, reaction buffers, amino acid mix w/o Arg, Lys, Ser, Thr, Val (supplied as individual amino acids), RNase-free water, gel-filtration columns, and reaction flasks</td>
<td>32526</td>
</tr>
<tr>
<td>EasyXpress NMR (U-15N) Kit</td>
<td>For 2 x 5 ml or 10 x 1 ml reactions: E. coli extract, reaction buffers, uniformly 15N labeled amino acid mix, RNase-free water, gel-filtration columns, and reaction flasks</td>
<td>CIL Catalog No. QIA-32531-N</td>
</tr>
<tr>
<td>EasyXpress NMR (U-15N, U-13C) Kit</td>
<td>For 2 x 5 ml or 10 x 1 ml reactions: E. coli extract, reaction buffers, uniformly 15N, 13C labeled amino acid mix, RNase-free water, gel-filtration columns, and reaction flasks</td>
<td>CIL Catalog No. QIA-32532-CN</td>
</tr>
<tr>
<td>EasyXpress NMR (U-15N, U-13C, U-D) Kit</td>
<td>For 2 x 5 ml or 10 x 1 ml reactions: E. coli extract, reaction buffers, uniformly 15N, 13C, and deuterium labeled amino acid mix, RNase-free water, gel-filtration columns, and reaction flasks</td>
<td>CIL Catalog No. QIA-32535-CDN</td>
</tr>
<tr>
<td>EasyXpress NMR Protein Synthesis Kit – A</td>
<td>For 2 x 5 ml or 10 x 1 ml reactions: E. coli extract, reaction buffers, amino acid mix w/o Ala (to be supplied by user), RNase-free water, gel-filtration columns, and reaction flasks</td>
<td>32530</td>
</tr>
<tr>
<td>EasyXpress NMR Protein Synthesis Kit – C</td>
<td>For 2 x 5 ml or 10 x 1 ml reactions: E. coli extract, reaction buffers, amino acid mix w/o Cys (to be supplied by user), RNase-free water, gel-filtration columns, and reaction flasks</td>
<td>32533</td>
</tr>
<tr>
<td>Product</td>
<td>Contents</td>
<td>Cat. no.</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>EasyXpress NMR Protein Synthesis Kit – E</td>
<td>For 2 x 5 ml or 10 x 1 ml reactions: E. coli extract, reaction buffers, amino acid mix w/o Glu (to be supplied by user), RNase-free water, gel-filtration columns, and reaction flasks</td>
<td>32534</td>
</tr>
<tr>
<td>EasyXpress NMR Protein Synthesis Kit – G</td>
<td>For 2 x 5 ml or 10 x 1 ml reactions: E. coli extract, reaction buffers, amino acid mix w/o Gly (to be supplied by user), RNase-free water, gel-filtration columns, and reaction flasks</td>
<td>32536</td>
</tr>
<tr>
<td>EasyXpress NMR Protein Synthesis Kit – H</td>
<td>For 2 x 5 ml or 10 x 1 ml reactions: E. coli extract, reaction buffers, amino acid mix w/o His (to be supplied by user), RNase-free water, gel-filtration columns, and reaction flasks</td>
<td>32537</td>
</tr>
<tr>
<td>EasyXpress NMR Protein Synthesis Kit – I</td>
<td>For 2 x 5 ml or 10 x 1 ml reactions: E. coli extract, reaction buffers, amino acid mix w/o Ile (to be supplied by user), RNase-free water, gel-filtration columns, and reaction flasks</td>
<td>32538</td>
</tr>
<tr>
<td>EasyXpress NMR Protein Synthesis Kit – L</td>
<td>For 2 x 5 ml or 10 x 1 ml reactions: E. coli extract, reaction buffers, amino acid mix w/o Leu (to be supplied by user), RNase-free water, gel-filtration columns, and reaction flasks</td>
<td>32539</td>
</tr>
<tr>
<td>EasyXpress NMR Protein Synthesis Kit – M</td>
<td>For 2 x 5 ml or 10 x 1 ml reactions: E. coli extract, reaction buffers, amino acid mix w/o Met (to be supplied by user), RNase-free water, gel-filtration columns, and reaction flasks</td>
<td>32540</td>
</tr>
<tr>
<td>EasyXpress NMR Protein Synthesis Kit – F</td>
<td>For 2 x 5 ml or 10 x 1 ml reactions: E. coli extract, reaction buffers, amino acid mix w/o Phe (to be supplied by user), RNase-free water, gel-filtration columns, and reaction flasks</td>
<td>32541</td>
</tr>
<tr>
<td>Product</td>
<td>Contents</td>
<td>Cat. no.</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>EasyXpress NMR Protein Synthesis Kit – P</td>
<td>For 2 x 5 ml or 10 x 1 ml reactions: E. coli extract, reaction buffers, amino acid mix w/o Pro (to be supplied by user), RNase-free water, gel-filtration columns, and reaction flasks</td>
<td>32542</td>
</tr>
<tr>
<td>EasyXpress NMR Protein Synthesis Kit – W</td>
<td>For 2 x 5 ml or 10 x 1 ml reactions: E. coli extract, reaction buffers, amino acid mix w/o Trp (to be supplied by user), RNase-free water, gel-filtration columns, and reaction flasks</td>
<td>32543</td>
</tr>
<tr>
<td>EasyXpress NMR Protein Synthesis Kit – Y</td>
<td>For 2 x 5 ml or 10 x 1 ml reactions: E. coli extract, reaction buffers, amino acid mix w/o Tyr (to be supplied by user), RNase-free water, gel-filtration columns, and reaction flasks</td>
<td>32544</td>
</tr>
<tr>
<td>EasyXpress Protein Synthesis Kit (5)</td>
<td>For 5 x 50 μl reactions: E. coli extract, reaction buffer, RNase-free water, and positive-control DNA</td>
<td>32501</td>
</tr>
<tr>
<td>EasyXpress Protein Synthesis Kit (20)</td>
<td>For 20 x 50 μl reactions: E. coli extract, reaction buffer, RNase-free water, and positive-control DNA</td>
<td>32502</td>
</tr>
<tr>
<td>EasyXpress Protein Synthesis Maxi Kit</td>
<td>For reactions up to 4000 μl: 4 x 350 μl E. coli extract, reaction buffer, RNase-free water, and positive-control DNA</td>
<td>32506</td>
</tr>
<tr>
<td>EasyXpress Linear Template Kit Plus (20)</td>
<td>For 20 two-step PCRs: For 20 two-step PCRs: HotStar HiFidelity DNA Polymerase, buffer, RNase-free water, Q-Solution, XE-Solution, positive-control DNA, and optimized PCR primers</td>
<td>32723</td>
</tr>
<tr>
<td>Protein purification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni-NTA Superflow Cartridges (5 x 1 ml)*</td>
<td>5 cartridges pre-filled with 1 ml Ni-NTA Superflow: for automated purification of His-tagged proteins using liquid chromatography systems</td>
<td>30721</td>
</tr>
</tbody>
</table>

* Larger sizes available; see www.qiagen.com.
<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-NTA Superflow Columns</td>
<td>For 12 6xHis-tagged protein preps: 12 polypropylene columns containing 1.5 ml Ni-NTA Superflow</td>
<td>30622</td>
</tr>
<tr>
<td>(12 x 1.5 ml)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni-NTA Superflow (25 ml)*</td>
<td>25 ml nickel-charged resin (max. pressure: 140 psi)</td>
<td>30410</td>
</tr>
<tr>
<td>Ni-NTA Agarose (25 ml)*</td>
<td>25 ml nickel-charged resin (max. pressure: 2.8 psi)</td>
<td>30210</td>
</tr>
<tr>
<td>Strep-Tactin Superflow (2 ml)*</td>
<td>For batch and HPLC purification of Strep-tagged proteins: 2 ml Strep-Tactin-charged Superflow (max. pressure: 140 psi)</td>
<td>30001</td>
</tr>
<tr>
<td>Polypropylene Columns (5 ml)</td>
<td>50/pack, 5 ml capacity</td>
<td>34964</td>
</tr>
<tr>
<td>QIArack</td>
<td>1 rack for holding gel-filtration columns or affinity-resin filled polypropylene columns</td>
<td>19015</td>
</tr>
<tr>
<td>Ni-NTA Magnetic Agarose Beads</td>
<td>2 x 1 ml nickel-charged magnetic agarose beads (5% suspension)</td>
<td>36111</td>
</tr>
<tr>
<td>(2 x 1 ml)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strep-Tactin Magnetic Beads</td>
<td>For micro-scale purification of Strep-tagged proteins: 2 x 1 ml Strep-Tactin-charged magnetic agarose beads (10% suspension)</td>
<td>36311</td>
</tr>
<tr>
<td>(2 x 1 ml)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein detection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penta-His HRP Conjugate Kit</td>
<td>125 μl Penta-His HRP Conjugate, 5 g Blocking Reagent, 50 ml Blocking Reagent Buffer (10x concentrate)</td>
<td>34460</td>
</tr>
<tr>
<td>Strep-tag Antibody (100 μg)</td>
<td>Mouse monoclonal antibody that recognizes the Strep-tag II epitope; lyophilized, for 1000 ml working solution</td>
<td>34850</td>
</tr>
<tr>
<td>6xHis Protein Ladder</td>
<td>6xHis-tagged marker proteins (lyophilized, for 50–100 lanes on western blots)</td>
<td>34705</td>
</tr>
</tbody>
</table>

* Larger sizes available; see www.qiagen.com.
Plasmid DNA purification

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>HiSpeed® Plasmid Midi Kit (25)*</td>
<td>25 HiSpeed Midi Tips, 25 QIAfilter Midi Cartridges, 25 QIAprecipitator Midi Modules plus Syringes, Reagents, Buffers</td>
<td>12643</td>
</tr>
<tr>
<td>QIAfilter Plasmid Midi Kit (25)*</td>
<td>25 QIAGEN-tip 100, Reagents, Buffers, 25 QIAfilter Midi Cartridges</td>
<td>12243</td>
</tr>
<tr>
<td>QIAGEN Plasmid Midi Kit (25)*</td>
<td>25 QIAGEN-tip 100, Reagents, Buffers</td>
<td>12143</td>
</tr>
</tbody>
</table>

* Larger sizes available; see www.qiagen.com.
Limited License Agreement

Use of this product signifies the agreement of any purchaser or user of EasyXpress Kits to the following terms:

1. EasyXpress Kits may be used solely in accordance with the EasyXpress Large-Scale Synthesis Handbook and for use with components contained in the kits only. QIAGEN grants no license under any of its intellectual property to use or incorporate the enclosed components of this kit with any components not included within this kit except as described in the EasyXpress Large-Scale Synthesis Handbook and additional protocols available at www.qiagen.com.

2. Other than expressly stated licenses, QIAGEN makes no warranty that the kits and/or its use(s) do not infringe the rights of third-parties.

3. This kit and its components are licensed for one-time use and may not be reused, refurbished, or resold.

4. QIAGEN specifically disclaims any other licenses, expressed or implied other than those expressly stated.

5. The purchaser and user of the kits agree not to take or permit anyone else to take any steps that could lead to or facilitate any acts prohibited above. QIAGEN may enforce the prohibitions of this Limited License Agreement in any Court, and shall recover all its investigative and Court costs, including attorney fees, in any action to enforce this Limited License Agreement or any of its intellectual property rights relating to the kits and/or their components.

For updated license terms, see www.qiagen.com.

© 2008–2009 QIAGEN, all rights reserved.