As of June 12, 2018 our Privacy Policy has been updated. For individuals in the European Union, CIL uses cookies on this website. Please review the new privacy statement to see how. By continuing to use this website you agree to us using cookies in accordance with our privacy statement. Click here for the new privacy statement..OK

Corporate Overview

IsoTopics™ – April 2016

Discovery of Serum Protein Biomarkers in the mdx Mouse Model and Cross-Species Comparison to Duchenne Muscular Dystrophy Patients

Duchenne muscular dystrophy (DMD) is a genetic disorder characterized by progressive muscle degeneration. Since current markers for DMD have limited specificity, efforts to expand the protein biomarker panel through comprehensive MS profiling are being explored. In this article, a concordant panel of serological biomarkers was identified in dystrophin-deficient mouse models – the naturally occurring mdx-23 and genetically engineered mdx-52 – and DMD patients by SILAM and label-free LC-MS/MS. These protein markers are associated with dystrophin deficiency and age-related muscle pathology, paving the way for their potential use as a readout tool for dystrophinopathies.

Abstract

It is expected that serum protein biomarkers in Duchenne muscular dystrophy (DMD) will reflect disease pathogenesis, progression and aid future therapy developments. Here, we describe use of quantitative in vivo stable isotope labeling in mammals to accurately compare serum proteomes of wild-type and dystrophin-deficient mdx mice. Biomarkers identified in serum from two independent dystrophin-deficient mouse models (mdx-Δ52 and mdx-23) were concordant with those identified in sera samples of DMD patients. Of the 355 mouse sera proteins, 23 were significantly elevated and 4 significantly lower in mdx relative to wild-type mice (P-value < 0.001). Elevated proteins were mostly of muscle origin: including myofibrillar proteins (titin, myosin light chain 1/3, myomesin 3 and filamin-C), glycolytic enzymes (aldolase, phosphoglycerate mutase 2, beta enolase and glycogen phosphorylase), transport proteins (fatty acid-binding protein, myoglobin and somatic cytochrome-C) and others (creatine kinase M, malate dehydrogenase cytosolic, fibrinogen and parvalbumin). Decreased proteins, mostly of extracellular origin, included adiponectin, lumican, plasminogen and leukemia inhibitory factor receptor. Analysis of sera from 1 week to 7 months old mdx mice revealed age-dependent changes in the level of these biomarkers with most biomarkers acutely elevated at 3 weeks of age. Serum analysis of DMD patients, with ages ranging from 4 to 15 years old, confirmed elevation of 20 of the murine biomarkers in DMD, with similar age-related changes. This study provides a panel of biomarkers that reflect muscle activity and pathogenesis and should prove valuable tool to complement natural history studies and to monitor treatment efficacy in future clinical trials.

Hathout Y, Marathi RL, Rayavarapu S, Zhang A, et al.

Read More.






Stable Isotope Newsletters | Cambridge Isotope Laboratories
stable isotope, stable isotope labeled compounds, environmental contaminant standards
CIL has been ready to help with the analytical standards critical to the task of defining and resolving any major environmental contamination problems.