As of June 12, 2018 our Privacy Policy has been updated. For individuals in the European Union, CIL uses cookies on this website. Please review the new privacy statement to see how. By continuing to use this website you agree to us using cookies in accordance with our privacy statement. Click here for the new privacy statement..OK

Biomolecular NMR

Deuterated Phospholipids

Deuterated Phospholipids and Detergents from FB Reagents

  • Deuterated Phospholipids and Detergents from FB Reagents
The study of structure, dynamics, and small-molecule binding properties of membrane proteins are of great interest within the field of structural biology and pharmaceutical drug development. The study of membrane proteins is made challenging because only certain phospholipids and detergents can be used to ensure the protein assumes the correct three-dimensional fold and remains active. Cambridge Isotope Laboratories, Inc. is proud to offer deuterated phospholipids and detergents manufactured by FB Reagents. FB Reagents is a trusted source of high-quality deuterated phospholipids and detergents used in NMR-based scientific research.  
The benefits for using highly deuterated phospholipids are:
  • Simplification of 1H-NMR spectrum
  • Easier detection of signals from biomolecules in multidimensional NMR experiments
  • Minimization of dipolar relaxation effects leads to signal enhancement in certain systems


Item No. Description Acronym Size
(hexanoyl-D22, 97%; 50-60% on alpha carbons)
DH6PC-d22 100 mg
(heptanoyl-D26, 97%; 50-60% on alpha carbons)
DH7PC-d26 100 mg
(dipalmitoyl-D62, 97%; 50-60% on alpha carbons)  
DPPC-d62 100 mg
(dioleoyl-D64, 97%; 50-60% on alpha, vinyl carbons)
DOPC-d64 50 mg
(fatty acids-D63, 97%; 50-60% on alpha, vinyl carbons)
POPC-d63 50 mg
1,2-Dimyristoyl-sn-glycero-3-phosphoglycerol, NH4+
(dimyristoyl-D54, 97%; 50-60% on alpha carbons)
DMPG-d54 100 mg
(dipalmitoyl-D62, 97%; 50-60% at alpha carbon)
DPPE-d62 100 mg
1,2-Dipalmitoyl-sn-glycero-3-phosphoserine, NH4+
(dipalmitoyl-D62, 97%; 50-60% on alpha carbons)
DPPS-d62 50 mg
1-Myristoyl-2-lyso-sn-glycero-3-phosphoglycerol NH4+
(myristoyl-D27, 97%; 50-60% at alpha carbon)
LMPG-d27 100 mg
1-Palmitoyl-2-lyso-sn-glycero-3-phosphoglycerol NH4+
(palmitoyl-D31, 97%; 50-60% at alpha carbon)
LPPG-d31 100 mg
Lauryl-N,N-dimethyl N-oxide
(lauryl-D25; dimethylamine-D6, 97%)
LDAO-d31 100 mg
DLM-11103 Dodecyl-β-D-maltopyranoside (dodecyl-D25, 97%) DDM-d25 100 mg
(decanoyl-D19, glycerol-D5, 97% (50-60% on alpha)
10-MAG-d24 100 mg
DLM-11105 L-α-Glycerophosphocholine-d9 (methyl-D9, 97%) GPC-d9 100 mg
We are unable to ship FB Reagent products to Sweden, Norway, Finland, and Japan.
Larger package sizes are available and may qualify for a discounted price.



Movelan, K.T.; Wegstroth, M.; Overkamp, K.; et al. 2020. Imidazole-imidazole hydrogen bonding in the pH-densing histidine side chains of influenza A M2. J Am Chem Soc, 142(6), 2704-2708. PMID: 31970979

Bibow, S. 2019. Opportunities and challenges of backbone, sidechain and RDC experiments to study membrane protein dynamics in a detergent-free lipid environment using solution state NMR. Front Mol Biosci, 6, 103. PMID: 31709261
Eddy, M.T.; Yu, T.Y.; Wagner, G.; et al. 2019. Structural characterization of the human membrane protein VDAC2 in lipid bilayers by MAS NMR. J Biomol NMR, 73(8-9), 451-460. PMID: 31407201
Bayrhuber, M.; Maslennikov, I.; Kwiatkowski, W.; et al.  2019. NMR solution structure and functional behavior of the human proton channel. Biochemistry, 58(39), 4017-4027. PMID: 31365236
Toyama, Y.; Shimada, I. 2019. Frequency selective coherence transfer NMR spectroscopy to study the structural dynamics of high molecular weight proteins. J Mag Res, 304, 62-67. PMID: 31129430
Brazin, K.N.; Mallis, R.J.; Boeszoermenyi, A.; et al. 2018. The T cell antigen receptor a transmembrane domain coordinates triggering through regulation of bilayer immersion and CD3 subunit associations. Immunity, 49(5), 829-841. PMID: 30389415
O'Brien, E.S.; Lin, D.W.; Fuglestad, B.; et al. 2018. Improving yields of deuterated, methyl labeled protein by growing in H2O. J Biomol NMR, 71(4), 263-273 . PMID: 30073492
Hagn, F.; Nasr, M.L.; Wagner, G. 2018. Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR. Nat Protoc, 13(1), 79-98. PMID: 29215632
Arenas, R.C.; Danielczak, B.; Martel, A.; et al. 2017. Fast collisional lipid transfer among polymer-bounded nanodiscs. Scientific Reports, 7, 45875. PMID: 28378790
Bibow, S.; Polyhach, Y.; Eichmann, C.; et al. 2017. Solution structure of discoidal high-density lipoprotein particles with a shortened apolipoprotein A-I. Nat Struct Mol Biol, 24(24), 187-193. PMID: 28024148
Laguerre, A.; Lõhr, F.; Henrich, E.; et al. 2016. From nanodiscs to isotropic bicelles: a procedure for solution NMR studies of detergent sensitive integral membrane proteins. Structure, 24(10), 1830-1841. PMID: 27618661
Bugge, K.; Papaleo, E.; Haxholm, G.W.; et al. 2016. A combined computational and structural model of the full-length human prolactin receptor. Nat Commun, 7, 11578. PMID: 27174498
Hagn, F.; Etzkorn, M.; Raschle, T.; et al. 2013. Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc, 135(5), 1919-1925. PMID: 23294159