\(^{18}\)O Labeling

\(^{18}\)O\(_2\) labeling is the Linux of isotope-labeling methods. Any laboratory can buy water (\(^{18}\)O, 99\%) (OLM-240-99) and adapt the method to its own applications. It offers a universal strategy for uniform labeling of all peptides from any kind of protein, including modified proteins.\(^1\) It is used to label clinical samples with unrivaled sensitivity.\(^2,3\) The only byproduct is water, and the immobilized catalytic enzyme can be removed mechanically. Labeling with \(^{18}\)O\(_2\) is limited to binary comparisons or series thereof, and it requires a workflow with minimal manipulation of proteins since the light and heavy samples are combined at the peptide level.

Two atoms of \(^{18}\)O are introduced into the carboxylic acid group of every proteolytic peptide in a protein pool that has been catalyzed by members of the serine protease family, which includes trypsin, Glu-C protease, Lys-C protease, and chymotrypsin. In the binding site of each protease, the residue of choice is covalently bound in a tetrahedral intermediate, which is then disrupted by nucleophilic attack by a water molecule, cleaving the protein. The C-terminal residue in each peptide product is re-bound by the protease, e.g. arginine and lysine in the case of trypsin, and released by hydrolysis. If the peptide products are incubated with the catalytic enzyme in water (\(^{18}\)O, 99\%) the level of \(^{18}\)O in the peptides will eventually equilibrate with the level of \(^{18}\)O in the solvent, preferably >95\%. Peptide binding by the protease offers the advantage that cleavage of the protein can be optimized and carried out separately from labeling the peptide.\(^4\)

Each heavy peptide weighs 4 Da more than its \(^{16}\)O\(_2\) light analog. After labeling, the mixtures of heavy and light peptides are mixed, and isotope ratios of peptide pairs are determined by LC/MS. Concurrent MS/MS measurements and appropriate computer algorithms can provide peptide identification along with quantitation.

Dr. Catherine Fenselau
University of Maryland
College Park, MD

References