Synthetic Intermediates for Deuterated Pharmaceuticals

Deuterated Intermediates

Stable Isotope-Labeled Synthetic Intermediates


  • Stable Isotope-Labeled Synthetic Intermediates

Stable Isotope-Labeled Synthetic Intermediates

In recent years some pharmaceutical companies have begun to investigate deuteration of molecules that may provide advantages over their existing nondeuterated counterparts. In addition, increasing research into the potential medical advantages of new deuterated drugs is also occurring. 

The potential advantages of deuterated pharmaceuticals includes:

Improved metabolic profile. The improved metabolic profile may potentially reduce or eliminate unwanted side effects or undesirable drug interactions.

Improved oral bioavailability. Deuteration in some compounds has reduced the presystemic metabolism that occurs in the digestive track, allowing more of the unmetabolized drug to reach its target.

Increased half-life. Deuterated compounds can have a slower pharamacokinetic affect, extending the absorption and distribution in the body. This may decrease the number of doses a patient may require in certain time period compared to its nondeuterated counterpart.

Catalog No. Description
DLM-112  Acetaldehyde (D4, 99%) 
DLM-12  Acetic acid-d4 (D, 99.5%)
DLM-1556 Acetic acid (OD, 98%)
DLM-1162 Acetic anhydride (D6, 98%) 
DLM-9 Acetone-d6 (D, 99.9%) 
DLM-247 Acetyl chloride (D3, 98%) 
DLM-855 Acrylic acid (+ 0.1% 4-methoxyphenol) (2,3,3-D3, 98%)  <5% H2O
DLM-862 Aniline (ring-D5, 98%)
DLM-1  Benzene-d6 (D, 99.5%)
DLM-494  Biphenyl (D10, 98%) 
DLM-1315  Borane (D3, 98%) (1 molar in THF) (+0.005M NaBD4) 
DLM-4747 Borane methylsulfide complex (D3, 99%)
DLM-398  Bromobenzene (D5, 99%)
DLM-874 Bromoethane (D5, 98%) 
DLM-181  1,4-Butanediol (2,2,3,3-D4, 98%)
DLM-1664 tert-Butanol (D10, 98%) 
DLM-1116  tert-Butyl chloride (D9, 98%) 
DLM-263  Chlorobenzene-d5 (D, 99%) 
DLM-337 Chlorobenzene (D3, 99%)
CNLM-7289  Cyanamide (13C, 99%; 15N2, 98%) (stabilized with <0.1% acetic acid) 
DLM-1560  Cyclohexanone (D10, 98%)
DLM-2781 Cyclopentyl bromide (D9, 98%)
DLM-1003DR Deuterium (D, 99.96) <400 PPM HD
DLM-408DR Deuterium (D, 99.8%) (D2, 99.6% + HD, 0.4%)
DLM-458DR Deuterium chloride (D,99%)
DLM-3  Deuterium chloride (D, 99.5%) DCl 35% w/w solution in D2
DLM-2  Deuterium chloride (D, 99.5%) DCl 20% w/w solution in D2O
DLM-4DR Deuterium oxide (D, 99.9%)
DLM-4-99  Deuterium oxide (D, 99%)
DLM-4DR-99.8 Deuterium oxide (D, 99.8%)
DLM-195  1,2-Dibromoethane-d4 (D, 99%)
DLM-158 1,2-Dichlorobenzene-d4 (D, 99%)
DLM-3903 Dimethyl carbonate (D6, 99%)
DLM-196 Dimethyl sulfate (D6, 98%) 
DLM-10 Dimethyl sulfoxide-d6 (D, 99.9%)
DLM-25 N,N-Dimethylformamide-d7 (D,99.5%)
DLM-1670  N,N Dimethylformamide (formyl-D, 98-99%)
DLM-31 Ethanol-d6 (D, 99%) anhydrous
DLM-16 Ethanol-d (D, 99%) <6% D2O
DLM-9660 N-Ethylaniline (D10, 98%)
DLM-9626 N-Ethylaniline (ethyl-D5, 98%)
DLM-347 Ethylene (D4, 98%)
DLM-805 Formaldehyde (D2, 98%) (~20% w/w in D2O)
DLM-286 Formic acid (D2, 98%) <5% D2O
DLM-743 Formic acid (formyl-D, 98%) <5% H2O
DLM-423 n-Heptane (D16, 98%)
DLM-1023 Iodoethane (1,1-D2, 98%) + copper wire
DLM-1024 Iodoethane (2,2,2-D3, 98%) + copper wire
DLM-272 Iodoethane (D5, 99%) + copper wire
DLM-44 Isopropanol-d8 (D, 99%)
DLM-6201 a-Ketoglutaric acid (3,3,4,4-D4, 98%) CP 90%
DLM-1945  bis(2-Chloroethoxy) methane (chloroethoxy-D8, 98%) 
DLM-1981 Methanesulfonic acid (D4, 97-98%)
DLM-24RG Methanol-d4 (D, 99.5%)
DLM-15 Methanol-d (D, 99%)
DLM-651 Methyl formate (formyl-D, 99%)
DLM-362 Methyl iodide + copper wire (D3, 99.5%)
DLM-9707 Methyl methanesulfonate (O-methyl-D3, 98%)
DLM-1500DR Methylamine (D3, 98%)
DLM-289 Methylamine·HCl (methyl-D3, 98%)
DLM-3484  Morpholine (2,2,3,3,5,5,6,6-D8, 98%)
DLM-295 2-Nitrophenol (ring-D4, 98%)
DLM-296 4-Nitrophenol (ring-D4, 98%)
DLM-619 Octanoic acid (D15, 98%)
DLM-300 Paraformaldehyde (D2, 99%)
DLM-370 Phenol (D6, 98%)
DLM-788 Phthalic anhydride (D4, 98%)
DLM-9813 Pivalic acid (trimethyl-D9, 98%)
DLM-9662 Pyrrolidine (2,2,3,3,4,4,5,5-D8, 98%)
DLM-226 Sodium borodeuteride (D4, 99%) CP 90-95%
DLM-45DR Sodium deuteroxide (D, 99.5%) 40% in D2O
DLM-1361 Sodium formate (D, 98%)
DLM-8206 Sodium 2,2-dimethyl-2silapentane-5-sulfonate (DDS) (D6, 98%)
DLM-33DR Sulfuric acid-d2 (D, 99%) 96-98% in D2O
DLM-36 Tetrahydrofuran-d8 (D, 99.5%)
DLM-2729 Tetramethylsilane (D12, 98%)

 

 

 

 

 

 

 

References:

Mullard, A, 2016 Deuterated drugs draw heavier backing. Nature Reviews Drug Discovery, Published online 1 Apr 2016 PMID: 27032821

2015. Drugs that live long will prosper. The EconomistScience & Technology, Sept. 5 edition. economist.com.  Read article

Kevin Millis, PhD

Kevin Millis, PhD

Senior Scientist, Application Development Manager

Kevin Millis, PhD, is the Senior Scientist and Market Development Manager for all NMR and Mass Spectrometry product lines. Kevin is responsible for Technical Services both internally and externally for all CIL customers as well as being responsible for the application and market development for the CIL products.

More
Tasha Agreste

Tasha Agreste

Proteomics Product Manager, Deuterated Reagents & Intermediates Product Manager, China Sales - Research Products

Tasha Agreste, Product Manager for the Proteomics product line, has been with CIL since 1989. During her tenure at CIL, Tasha has held various positions including customer service, sales and marketing, where she has proven to be instrumental in enhancing CIL’s customer relationships.

More